1.3

Modeling with Linear Functions For use with Exploration 1.3

Essential Question How can you use a linear function to model and analyze a real-life situation?

EXPLORATION: Modeling with a Linear Function

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. A company purchases a copier for \$12,000. The spreadsheet shows how the copier depreciates over an 8-year period.

a. Write a linear function to represent the value *V* of the copier as a function of the number *t* of years.

	А	В		
1	Year, t	Value, V		
2	0	\$12,000		
З	1	\$10,750		
4	2	\$9,500		
5	3	\$8,250		
6	4	\$7,000		
7	5	\$5,750		
8	6	\$4,500		
9	7	\$3,250		
10	8	\$2,000		
11				

b. Sketch a graph of the function. Explain why this type of depreciation is called *straight line depreciation*.

c. Interpret the slope of the graph in the context of the problem.

1.3 Modeling with Linear Functions (continued)

EXPLORATION: Modeling with Linear Functions

Work with a partner. Match each description of the situation with its corresponding graph. Explain your reasoning.

- **a.** A person gives \$20 per week to a friend to repay a \$200 loan.
- **b.** An employee receives \$12.50 per hour plus \$2 for each unit produced per hour.
- c. A sales representative receives \$30 per day for food plus \$0.565 for each mile driven.
- d. A computer that was purchased for \$750 depreciates \$100 per year.

Communicate Your Answer

- 3. How can you use a linear function to model and analyze a real-life situation?
- **4.** Use the Internet or some other reference to find a real-life example of straight line depreciation.
 - **a.** Use a spreadsheet to show the depreciation.
 - **b.** Write a function that models the depreciation.
 - **c.** Sketch a graph of the function.

In your own words, write the meaning of each vocabulary term.

line of fit

line of best fit

correlation coefficient

Core Concepts

Writing an Equation of a Line

slope-intercept form:
)

y = mx + b

Given slope m and a point (x_1, y_1) Use point-slope form:

$$y - y_1 = m(x - x_1)$$

Given points (x_1, y_1) and (x_2, y_2)

2, y₂) First use the slope formula to find *m*.Then use point-slope form with either given point.

Notes:

1.3 Notetaking with Vocabulary (continued)

Finding a Line of Fit

- **Step 1** Create a scatter plot of the data.
- **Step 2** Sketch the line that most closely appears to follow the trend given by the data points. There should be about as many points above the line as below it.
- **Step 3** Choose two points on the line and estimate the coordinates of each point. These points do not have to be original data points.
- **Step 4** Write an equation of the line that passes through the two points from Step 3. This equation is a model for the data.

Notes:

Extra Practice

In Exercises 1–3, use the graph to write an equation of the line and interpret the slope.

1.3 Notetaking with Vocabulary (continued)

4. The cost of parking in a parking garage in Chicago is represented by the equation y = 15x + 20 where y is the total cost (in dollars) and x is the time (in hours). The table shows the total cost to park in a parking garage in Denver. Which city's parking garage charges more per hour and by how much more? After how many hours would parking in both cities cost the same?

Hours, <i>x</i>	2	3	4	5
Cost, y	43	51	59	67

In Exercises 5–7, use the *linear regression* feature on a graphing calculator to find an equation of the line of best fit for the data. Find and interpret the correlation coefficient.

