\qquad
1.2

Transformations of Linear and Absolute Value Functions

 For use with Exploration 1.2Essential Question How do the graphs of $y=f(x)+k, y=f(x-h)$, and $y=-f(x)$ compare to the graph of the parent function f ?

1 EXPLORATION: Transformations of the Absolute Value Function
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Compare the graph of the function

$$
y=|x|+k \quad \text { Transformation }
$$

to the graph of the parent function

$$
f(x)=|x| .
$$

Parent function

2 EXPLORATION: Transformations of the Absolute Value Function

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Compare the graph of the function

$$
y=|x-h| \quad \text { Transformation }
$$

to the graph of the parent function

$$
f(x)=|x| . \quad \text { Parent function }
$$

\qquad

1.2 Transformations of Linear and Absolute Value Functions (continued)

3 EXPLORATION: Transformation of the Absolute Value Function
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Compare the graph of the function

$$
y=-|x| \quad \text { Transformation }
$$

to the graph of the parent function

$$
f(x)=|x| . \quad \text { Parent function }
$$

Communicate Your Answer

4. How do the graphs of $y=f(x)+k, y=f(x-h)$, and $y=-f(x)$ compare to the graph of the parent function f ?
5. Compare the graph of each function to the graph of its parent function f. Use a graphing calculator to verify your answers are correct.
a. $y=\sqrt{x}-4$
b. $y=\sqrt{x+4}$
c. $y=-\sqrt{x}$
d. $y=x^{2}+1$
e. $y=(x-1)^{2}$
f. $y=-x^{2}$
\qquad

1.2
 Notetaking with Vocabulary
 For use after Lesson 1.2

Core Concepts

Horizontal Translations

The graph of $y=f(x-h)$ is a horizontal translation of the graph of $y=f(x)$, where $h \neq 0$.

Subtracting h from the inputs before evaluating the function shifts the graph left when $h<0$ and right when $h>0$.

Notes:

Vertical Translations

The graph of $y=f(x)+k$ is a vertical translation of the graph of $y=f(x)$, where $k \neq 0$.

Adding k to the outputs shifts the graph down when $k<0$ and up when $k>0$.
\qquad
\qquad

1.2 Notetaking with Vocabulary (continued)

Reflections in the \boldsymbol{x}-axis

The graph of $y=-f(x)$ is a reflection in the x-axis of the graph of $y=f(x)$.

Multiplying the outputs by -1 changes their signs.

Notes:

Horizontal Stretches and Shrinks

The graph of $y=f(a x)$ is a horizontal stretch or shrink by a factor of $\frac{1}{a}$ of the graph of $y=f(x)$, where $a>0$ and $a \neq 1$.

Multiplying the inputs by a before evaluating the function stretches the graph horizontally (away from the y-axis) when $0<a<1$, and shrinks the graph horizontally (toward the y-axis) when $a>1$.

Notes:

Reflections in the \boldsymbol{y}-axis

The graph of $y=f(-x)$ is a reflection in the y-axis of the graph of $y=f(x)$.

Multiplying the inputs by -1 changes their signs.
\qquad

1.2 Notetaking with Vocabulary (continued)

Vertical Stretches and Shrinks

The graph of $y=a \bullet f(x)$ is a vertical stretch or shrink by a factor of a of the graph of $y=f(x)$, where $a>0$ and $a \neq 1$.

Multiplying the outputs by a stretches the graph vertically (away from the x-axis) when $a>1$, and shrinks the graph vertically (toward the x-axis)
 when $0<a<1$.

Notes:

Extra Practice

In Exercises 1-9, write a function g whose graph represents the indicated transformation of the graph of \boldsymbol{f}. Use a graphing calculator to check your answer.

1. $f(x)=\left|\frac{1}{3} x\right|$; translation 2 units to the left
2. $f(x)=-|x+9|-1$; translation 6 units down
3. $f(x)=-2 x+2$; translation 7 units down
\qquad
\qquad

1.2 Notetaking with Vocabulary (continued)

4. $f(x)=\frac{1}{2} x+8$; reflection in the x-axis
5. $f(x)=4+|x+1|$; reflection in the y-axis
6. $f(x)=-5 x$; vertical shrink by a factor of $\frac{1}{5}$
7. $f(x)=|x+3|+2$; vertical stretch by a factor of 4
8. $f(x)=3 x-9$; horizontal stretch by a factor of 6
9. $f(x)=-|8 x|-4$; horizontal shrink by a factor of $\frac{1}{4}$
10. Consider the function $f(x)=|x|$. Write a function g whose graph represents a reflection in the x-axis followed by a horizontal stretch by a factor of 3 and a translation 5 units down of the graph of f.
11. Which of the transformation(s) in Section 1.2 will not change the y-intercept of $f(x)=|x|+3$?
