9.6

Solving Nonlinear Systems of Equations For use with Exploration 9.6

Essential Question How can you solve a system of two equations when one is linear and the other is quadratic?

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Solve the system of equations by graphing each equation and finding the points of intersection.

System of Equations

y = x + 2	Linear
$y = x^2 + 2x$	Quadratic

EXPLORATION: Analyzing Systems of Equations

Work with a partner. Match each system of equations with its graph (shown on the next page). Then solve the system of equations.

a.	$y = x^2 - 4$	b.	$y = x^2 - 2x + 2$
	y = -x - 2		y = 2x - 2

c. $y = x$	$x^{2} + 1$	d.	<i>y</i> =	$x^{2} -$	x - 6
y = x	z – 1		<i>y</i> =	2x -	2

9.6 Solving Nonlinear Systems of Equations (continued)

Communicate Your Answer

3. How can you solve a system of two equations when one is linear and the other is quadratic?

4. Write a system of equations (one linear and one quadratic) that has (a) no solutions, (b) one solution, and (c) two solutions. Your systems should be different from those in Explorations 1 and 2.

In your own words, write the meaning of each vocabulary term.

system of nonlinear equations

Notes:

9.6

Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–6, solve the system by graphing.

In Exercises 7–9, solve the equation by substitution.

7.
$$y - 2 = x^2$$
 8. $y = -2x^2$
 9. $y = x - 4$
 $y = 6$
 $y = 3x + 2$
 $y = x^2 + 3x - 4$

9.6 Notetaking with Vocabulary (continued)

In Exercises 10–12, solve the equation by elimination.

10.
$$y = x^2$$

 $y = x - 3$
11. $y = x^2 + 3x - 5$
12. $y = x^2 + x - 2$
 $y = 3x - 1$
12. $y = x^2 + x - 2$

In Exercises 13–18, solve the equation. Round your solution(s) to the nearest hundredth, if necessary.

13.
$$-6x + 14 = x^2 - 9x + 16$$
 14. $-x^2 + 4x = -2x + 8$

15.
$$4x^2 - 9 = 4x - 1$$

16. $-\frac{1}{2}x + 1 = -x^2 + 4x$

17.
$$2x^2 - 4 = -x^2 + 6$$

18. $-3\left(\frac{2}{3}\right)^x + 2 = x^2 - 2$