\qquad

9.3
 Solving Quadratic Equations Using Square Roots

Essential Question How can you determine the number of solutions of a quadratic equation of the form $a x^{2}+c=0$?

1 EXPLORATION: The Number of Solutions of $a x^{2}+c=0$
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Solve each equation by graphing. Explain how the number of solutions of $a x^{2}+c=0$ relates to the graph of $y=a x^{2}+c$.
a. $x^{2}-4=0$

b. $2 x^{2}+5=0$

c. $x^{2}=0$

d. $x^{2}-5=0$

2 EXPLORATION: Estimating Solutions

Work with a partner. Complete each table. Use the completed tables to estimate the solutions of $x^{2}-5=0$. Explain your reasoning.
a.

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}-\mathbf{5}}$
2.21	
2.22	
2.23	
2.24	
2.25	
2.26	

b.

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}-\mathbf{5}}$
-2.21	
-2.22	
-2.23	
-2.24	
-2.25	
-2.26	

\qquad
\qquad

9.3 Solving Quadratic Equations Using Square Roots (continued)

3 EXPLORATION: Using Technology to Estimate Solutions

Work with a partner. Two equations are equivalent when they have the same solutions.
a. Are the equations $x^{2}-5=0$ and $x^{2}=5$ equivalent? Explain your reasoning.
b. Use the square root key on a calculator to estimate the solutions of $x^{2}-5=0$. Describe the accuracy of your estimates in Exploration 2.
c. Write the exact solutions of $x^{2}-5=0$.

Communicate Your Answer

4. How can you determine the number of solutions of a quadratic equation of the form $a x^{2}+c=0$?
5. Write the exact solutions of each equation. Then use a calculator to estimate the solutions.
a. $x^{2}-2=0$
b. $3 x^{2}-18=0$
c. $x^{2}=8$
\qquad

9.3

In your own words, write the meaning of each vocabulary term.
square root
zero of a function

Core Concepts

Solutions of $\boldsymbol{x}^{2}=\boldsymbol{d}$

- When $d>0, x^{2}=d$ has two real solutions, $x= \pm \sqrt{d}$.
- When $d=0, x^{2}=d$ has one real solution, $x=0$.
- When $d<0, x^{2}=d$ has no real solutions.

Notes:

\qquad

9.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-18, solve the equation using square roots.

1. $x^{2}+49=0$
2. $x^{2}-25=0$
3. $x^{2}+6=6$
4. $2 x^{2}+84=0$
5. $2 x^{2}-72=0$
6. $-x^{2}-12=-12$
7. $8 x^{2}-49=151$
8. $-3 x^{2}+16=-11$
9. $81 x^{2}-49=-24$
10. $16 x^{2}-1=0$
11. $25 x^{2}+9=0$
12. $16-2 x^{2}=16$
13. $(x-4)^{2}=0$
14. $(x+2)^{2}=196$
15. $(2 x+7)^{2}=49$
\qquad
\qquad
9.3 Notetaking with Vocabulary (continued)
16. $16(x-3)^{2}=25$
17. $81(3 x+1)^{2}=49$
18. $(4 x-3)^{2}=64$

In Exercises 19-24, solve the equation using square roots. Round your solutions to the nearest hundredth.
19. $x^{2}+6=8$
20. $x^{2}-12=3$
21. $x^{2}+25=49$
22. $3 x^{2}-4=14$
23. $6 x^{2}+5=20$
24. $20-4 x^{2}=18$
25. A ball is dropped from a window at a height of 81 feet. The function $h=-16 x^{2}+81$ represents the height (in feet) of the ball after x seconds. How long does it take for the ball to hit the ground?
26. The volume of a cone with height h and radius r is given by the formula $V=\frac{1}{3} \pi r^{2} h$. Solve the formula for r. Then find the radius of a cone with volume 27π cubic inches and height 4 inches.

