9.3

Solving Quadratic Equations Using Square Roots For use with Exploration 9.3

Essential Question How can you determine the number of solutions of a quadratic equation of the form $ax^2 + c = 0$?

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Solve each equation by graphing. Explain how the number of solutions of $ax^2 + c = 0$ relates to the graph of $y = ax^2 + c$.

2

EXPLORATION: Estimating Solutions

Work with a partner. Complete each table. Use the completed tables to estimate the solutions of $x^2 - 5 = 0$. Explain your reasoning.

a.	x	x ² - 5
	2.21	
	2.22	
	2.23	
	2.24	
	2.25	
	2.26	

b.	x	x ² - 5
	-2.21	
	-2.22	
	-2.23	
	-2.24	
	-2.25	
	-2.26	

Copyright © Big Ideas Learning, LLC All rights reserved.

9.3 Solving Quadratic Equations Using Square Roots (continued)

EXPLORATION: Using Technology to Estimate Solutions

Work with a partner. Two equations are equivalent when they have the same solutions.

- **a.** Are the equations $x^2 5 = 0$ and $x^2 = 5$ equivalent? Explain your reasoning.
- **b.** Use the square root key on a calculator to estimate the solutions of $x^2 5 = 0$. Describe the accuracy of your estimates in Exploration 2.
- **c.** Write the exact solutions of $x^2 5 = 0$.

Communicate Your Answer

- 4. How can you determine the number of solutions of a quadratic equation of the form $ax^2 + c = 0$?
- **5.** Write the exact solutions of each equation. Then use a calculator to estimate the solutions.

a.
$$x^2 - 2 = 0$$

b. $3x^2 - 18 = 0$

c.
$$x^2 = 8$$

9.3 Notetaking with Vocabulary For use after Lesson 9.3

In your own words, write the meaning of each vocabulary term.

square root

zero of a function

Core Concepts

Solutions of $x^2 = d$

- When $d > 0, x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.
- When $d = 0, x^2 = d$ has one real solution, x = 0.
- When $d < 0, x^2 = d$ has no real solutions.

Notes:

9.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–18, solve the equation using square roots.

1.
$$x^2 + 49 = 0$$

2. $x^2 - 25 = 0$
3. $x^2 + 6 = 6$
4. $2x^2 + 84 = 0$
5. $2x^2 - 72 = 0$
6. $-x^2 - 12 = -12$

7. $8x^2 - 49 = 151$ **8.** $-3x^2 + 16 = -11$ **9.** $81x^2 - 49 = -24$

10.
$$16x^2 - 1 = 0$$
 11. $25x^2 + 9 = 0$ **12.** $16 - 2x^2 = 16$

13.
$$(x-4)^2 = 0$$
 14. $(x+2)^2 = 196$ **15.** $(2x+7)^2 = 49$

9.3 Notetaking with Vocabulary (continued)

16.
$$16(x-3)^2 = 25$$
 17. $81(3x+1)^2 = 49$ **18.** $(4x-3)^2 = 64$

In Exercises 19–24, solve the equation using square roots. Round your solutions to the nearest hundredth.

19. $x^2 + 6 = 8$ **20.** $x^2 - 12 = 3$ **21.** $x^2 + 25 = 49$

22. $3x^2 - 4 = 14$ **23.** $6x^2 + 5 = 20$ **24.** $20 - 4x^2 = 18$

25. A ball is dropped from a window at a height of 81 feet. The function $h = -16x^2 + 81$ represents the height (in feet) of the ball after x seconds. How long does it take for the ball to hit the ground?

26. The volume of a cone with height *h* and radius *r* is given by the formula $V = \frac{1}{3}\pi r^2 h$. Solve the formula for *r*. Then find the radius of a cone with volume 27π cubic inches and height 4 inches.