9.1

Properties of Radicals For use with Exploration 9.1

Essential Question How can you multiply and divide square roots?

EXPLORATION: Operations with Square Roots

Work with a partner. For each operation with square roots, compare the results obtained using the two indicated orders of operations. What can you conclude?

a. Square Roots and Addition

Is $\sqrt{36} + \sqrt{64}$ equal to $\sqrt{36 + 64}$?

In general, is $\sqrt{a} + \sqrt{b}$ equal to $\sqrt{a+b}$? Explain your reasoning.

b. Square Roots and Multiplication

Is $\sqrt{4} \bullet \sqrt{9}$ equal to $\sqrt{4 \bullet 9}$?

In general, is $\sqrt{a} \cdot \sqrt{b}$ equal to $\sqrt{a \cdot b}$? Explain your reasoning.

c. Square Roots and Subtraction

Is $\sqrt{64} - \sqrt{36}$ equal to $\sqrt{64 - 36}$?

In general, is $\sqrt{a} - \sqrt{b}$ equal to $\sqrt{a - b}$? Explain your reasoning.

d. Square Roots and Division

Is
$$\frac{\sqrt{100}}{\sqrt{4}}$$
 equal to $\sqrt{\frac{100}{4}}$
In general, is $\frac{\sqrt{a}}{\sqrt{b}}$ equal to $\sqrt{\frac{a}{b}}$? Explain your reasoning.

276 Algebra 1 Student Journal

9.1 Properties of Radicals (continued)

2 **EXPLORATION:** Writing Counterexamples

Work with a partner. A **counterexample** is an example that proves that a general statement is *not* true. For each general statement in Exploration 1 that is not true, write a counterexample different from the example given.

Communicate Your Answer

- 3. How can you multiply and divide square roots?
- **4.** Give an example of multiplying square roots and an example of dividing square roots that are different from the examples in Exploration 1.
- 5. Write an algebraic rule for each operation.
 - **a.** the product of square roots
 - **b.** the quotient of square roots

9.1 Notetaking with Vocabulary For use after Lesson 9.1

In your own words, write the meaning of each vocabulary term.

counterexample

radical expression

simplest form

rationalizing the denominator

conjugates

like radicals

Core Concepts

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors.

Numbers $\sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$

Algebra $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$, where $a, b \ge 0$

Notes:

9.1 Notetaking with Vocabulary (continued)

Quotient Property of Square Roots

Words The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

Numbers $\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$ Algebra $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$, where $a \ge 0$ and b > 0

Notes:

Extra Practice

In Exercises 1–12, simplify the expression.

1. √24	2. $-\sqrt{48}$	3. $\sqrt{162g^6}$	4. $-\sqrt{512h^7}$
5. $\sqrt{\frac{25}{64}}$	6. $-\sqrt{\frac{6}{49}}$	7. $-\sqrt{\frac{196}{r^4}}$	8. $\sqrt{\frac{49x^3}{64y^2}}$
9. $\sqrt[3]{-135}$	10 . ∛729	11. $-\sqrt[3]{-192x^5}$	12. $\sqrt[3]{\frac{12a^6}{512b^4}}$

9.1 Notetaking with Vocabulary (continued)

In Exercises 13–20, simplify the expression.

13.
$$\frac{\sqrt{15}}{\sqrt{500}}$$
 14. $\sqrt{\frac{8}{100}}$ **15.** $\frac{\sqrt{3x^2y^3}}{\sqrt{80xy^3}}$ **16.** $\frac{8}{\sqrt[3]{16}}$
17. $\frac{5}{-3-3\sqrt{3}}$ **18.** $\frac{3}{4+4\sqrt{5}}$ **19.** $\frac{4}{\sqrt{2}-5\sqrt{3}}$ **20.** $\frac{\sqrt{5}}{\sqrt{3}+\sqrt{5}}$

21. The ratio of the length to the width of a *golden rectangle* is $(1 + \sqrt{5})$: 2. The length of a golden rectangle is 62 meters. What is the width? Round your answer to the nearest meter.

In Exercises 22–27, simplify the expression.

22.
$$3\sqrt{8} + 3\sqrt{2}$$
 23. $2\sqrt{18} - 2\sqrt{20} - 2\sqrt{5}$ **24.** $3\sqrt{12} + 3\sqrt{18} + 2\sqrt{27}$

25.
$$2\sqrt{5}(\sqrt{6}+2)$$
 26. $(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})$ **27.** $\sqrt[3]{2}(\sqrt[3]{108}-\sqrt[3]{135})$