1

8.5

Using Intercept Form For use with Exploration 8.5

Essential Question What are some of the characteristics of the graph of f(x) = a(x - p)(x - q)?

EXPLORATION: Using Zeros to Write Functions

Work with a partner. Each graph represents a function of the form f(x) = (x - p)(x - q)or f(x) = -(x - p)(x - q). Write the function represented by each graph. Explain your reasoning.

-4

-4

8.5 Using Intercept Form (continued)

EXPLORATION: Using Zeros to Write Functions (continued)

Communicate Your Answer

2. What are some of the characteristics of the graph of f(x) = a(x - p)(x - q)?

- **3.** Consider the graph of f(x) = a(x-p)(x-q).
 - **a.** Does changing the sign of *a* change the *x*-intercepts? Does changing the sign of *a* change the *y*-intercept? Explain your reasoning.
 - **b.** Does changing the value of *p* change the *x*-intercepts? Does changing the value of *p* change the *y*-intercept? Explain your reasoning.

8.5 Notetaking with Vocabulary For use after Lesson 8.5

In your own words, write the meaning of each vocabulary term.

intercept form

Core Concepts

Graphing f(x) = a(x-p)(x-q)

- The *x*-intercepts are *p* and *q*.
- The axis of symmetry is halfway between (p, 0) and (q, 0). So,

the axis of symmetry is $x = \frac{p+q}{2}$.

• The graph opens up when a > 0, and the graph opens down when a < 0.

Notes:

Factors and Zeros

For any factor x - n of a polynomial, *n* is a zero of the function defined by the polynomial.

Notes:

_ Date _____

8.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1 and 2, find the *x*-intercepts and axis of symmetry of the graph of the function.

1. y = (x + 2)(x - 4)**2.** y = -3(x - 2)(x - 3)

In Exercises 3–6, graph the quadratic function. Label the vertex, axis of symmetry, and *x*-intercepts. Describe the domain and range of the function.

3. m(x) = (x + 5)(x + 1)

5. $y = x^2 - 4$

6. $f(x) = x^2 + 2x - 15$

8.5 Notetaking with Vocabulary (continued)

In Exercises 7 and 8, find the zero(s) of the function.

7.
$$y = 6x^2 - 6$$
 8. $y = x^2 + 9x + 20$

In Exercises 9–12, use zeros to graph the function.

9. $f(x) = x^2 - 3x - 10$

10.	f(x)	=	-2(x)	+	3)	(x)	_ 1	D)
	$\mathcal{J}(\mathcal{N})$		-(~~		2,0	(\mathcal{N})	-	Ľ

11. $f(x) = x^3 - 9x$

12. $f(x) = 2x^3 - 12x^2 + 10x$

