\qquad
\qquad
8.4 $\underset{\text { For use with Exploration } 8.4}{\text { Graphing } f(x)=a(x-h)^{2}+\boldsymbol{k}}$

Essential Question How can you describe the graph of $f(x)=a(x-h)^{2}$?

1 EXPLORATION: Graphing $y=a(x-h)^{2}$ When $h>0$
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y=a(x-h)^{2}$?
a. $\quad f(x)=x^{2}$ and $g(x)=(x-2)^{2}$

b. $\quad f(x)=2 x^{2}$ and $g(x)=2(x-2)^{2}$

\qquad
8.4 Graphing $f(x)=a(x-h)^{2}+k$ (continued)

2 EXPLORATION: Graphing $y=a(x-h)^{2}$ When $h<0$
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y=a(x-h)^{2}$?
a. $\quad f(x)=-x^{2}$ and $g(x)=-(x+2)^{2}$
b. $\quad f(x)=-2 x^{2}$ and $g(x)=-2(x+2)^{2}$

Communicate Your Answer

3. How can you describe the graph of $f(x)=a(x-h)^{2}$?
4. Without graphing, describe the graph of each function. Use a graphing calculator to check your answer.
a. $y=(x-3)^{2}$
b. $y=(x+3)^{2}$
c. $y=-(x-3)^{2}$
\qquad

8.4
 Notetaking with Vocabulary
 For use after Lesson 8.4

In your own words, write the meaning of each vocabulary term.
even function
odd function
vertex form (of a quadratic function)

Core Concepts

Even and Odd Functions

A function $y=f(x)$ is even when $f(-x)=f(x)$ for each x in the domain of f. The graph of an even function is symmetric about the y-axis.

A function $y=f(x)$ is odd when $f(-x)=-f(x)$ for each x in the domain of f. The graph of an odd function is symmetric about the origin. A graph is symmetric about the origin when it looks the same after reflections in the x-axis and then in the y-axis.

Notes:

Graphing $f(x)=a(x-h)^{2}$

- When $h>0$, the graph of $f(x)=a(x-h)^{2}$ is a horizontal translation h units right of the graph $f(x)=a x^{2}$.
- When $h<0$, the graph of $f(x)=a(x-h)^{2}$ is a horizontal translation $|h|$ units left of the graph of $f(x)=a x^{2}$.

The vertex of the graph of $f(x)=a(x-h)^{2}$ is $(h, 0)$, and the
 axis of symmetry is $x=h$.

Notes:
\qquad

8.4 Notetaking with Vocabulary (continued)

Graphing $f(x)=a(x-h)^{2}+k$

The vertex form of a quadratic function is $f(x)=a(x-h)^{2}+k$, where $a \neq 0$. The graph of $f(x)=a(x-h)^{2}+k$ is a translation h units horizontally and k units vertically of the graph of $f(x)=a x^{2}$.

The vertex of the graph of $f(x)=a(x-h)^{2}+k$ is (h, k), and

Notes:

Extra Practice

In Exercises 1-4, determine whether the function is even, odd, or neither.

1. $f(x)=5 x$
2. $f(x)=-4 x^{2}$
3. $h(x)=\frac{1}{2} x^{2}$
4. $f(x)=-3 x^{2}+2 x+1$

In Exercises 5-8, find the vertex and the axis of symmetry of the graph of the function.
5. $f(x)=5(x-2)^{2}$
6. $f(x)=-4(x+8)^{2}$
\qquad
\qquad

8.4 Notetaking with Vocabulary (continued)

7. $p(x)=-\frac{1}{2}(x-1)^{2}+4$
8. $g(x)=-(x+1)^{2}-5$

In Exercises 9 and 10, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
9. $m(x)=3(x+2)^{2}$

10. $g(x)=-\frac{1}{4}(x-6)^{2}+4$

In Exercises 11 and 12, graph g.
11. $f(x)=3(x+1)^{2}-1 ; g(x)=f(x+2)$

12. $f(x)=\frac{1}{2}(x-3)^{2}-5 ; g(x)=-f(x)$

