\qquad
8.3 Graphing $f(x)=a x^{2}+b x+c$

For use with Exploration 8.3

Essential Question How can you find the vertex of the graph of

 $f(x)=a x^{2}+b x+c ?$
1 EXPLORATION: Comparing x-Intercepts with the Vertex

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

a. Sketch the graphs of $y=2 x^{2}-8 x$ and $y=2 x^{2}-8 x+6$.

b. What do you notice about the x-coordinate of the vertex of each graph?
c. Use the graph of $y=2 x^{2}-8 x$ to find its x-intercepts. Verify your answer by solving $0=2 x^{2}-8 x$.
d. Compare the value of the x-coordinate of the vertex with the values of the x-intercepts.
\qquad
8.3 Graphing $f(x)=a x^{2}+b x+c$ (continued)

2 EXPLORATION: Finding x-Intercepts

Work with a partner.
a. Solve $0=a x^{2}+b x$ for x by factoring.
b. What are the x-intercepts of the graph of $y=a x^{2}+b x$?
c. Complete the table to verify your answer.

x	$y=a x^{2}+b x$
0	
$-\frac{b}{a}$	

3 EXPLORATION: Deductive Reasoning

Work with a partner. Complete the following logical argument.
The x-intercepts of the graph of $y=a x^{2}+b x$ are 0 and $-\frac{b}{a}$.

The vertex of the graph of $y=a x^{2}+b x$ occurs when $x=$ \qquad .

The vertices of the graphs of $y=a x^{2}+b x$ and $y=a x^{2}+b x+c$ have the same x-coordinate.

The vertex of the graph of $y=a x^{2}+b x+c$ occurs when $x=$ \qquad .

Communicate Your Answer

4. How can you find the vertex of the graph of $f(x)=a x^{2}+b x+c$?
5. Without graphing, find the vertex of the graph of $f(x)=x^{2}-4 x+3$.

Check your result by graphing.
\qquad

Notetaking with Vocabulary

 For use after Lesson 8.3In your own words, write the meaning of each vocabulary term.
maximum value
minimum value

Core Concepts

Graphing $f(x)=a x^{2}+b x+c$

- The graph opens up when $a>0$, and the graph opens down when $a<0$.
- The y-intercept is c.
- The x-coordinate of the vertex is $-\frac{b}{2 a}$.
- The axis of symmetry is $x=-\frac{b}{2 a}$.

Notes:

\qquad
\qquad
8.3 Notetaking with Vocabulary (continued)

Maximum and Minimum Values

The y-coordinate of the vertex of the graph of $f(x)=a x^{2}+b x+c$ is the maximum value of the function when $a<0$ or the minimum value of the function when $a>0$.

$$
f(x)=a x^{2}+b x+c, a<0 \quad f(x)=a x^{2}+b x+c, a>0
$$

Notes:

Extra Practice

In Exercises 1-4, find (a) the axis of symmetry and (b) the vertex of the graph of the function.

1. $f(x)=x^{2}-10 x+2$
2. $y=-4 x^{2}+16 x$
3. $y=-2 x^{2}-8 x+5$
4. $f(x)=-3 x^{2}+6 x+1$
\qquad

8.3 Notetaking with Vocabulary (continued)

In Exercises 5-7, graph the function. Describe the domain and range.
5. $f(x)=3 x^{2}+6 x+2$

6. $y=2 x^{2}-8 x-1$

7. $y=-\frac{1}{5} x^{2}-x+5$

In Exercises 8-13, tell whether the function has a minimum value or a maximum value. Then find the value.
8. $y=-\frac{1}{2} x^{2}-5 x+2$
9. $y=8 x^{2}+16 x-2$
10. $y=-x^{2}-4 x-7$
11. $y=-7 x^{2}+7 x+5$
12. $y=9 x^{2}+6 x+4$
13. $y=-\frac{1}{4} x^{2}+x-6$
14. The function $h=-16 t^{2}+250 t$ represents the height h (in feet) of a rocket t seconds after it is launched. The rocket explodes at its highest point.
a. When does the rocket explode?
b. At what height does the rocket explode?

