8.2

# Graphing $f(x) = ax^2 + c$ For use with Exploration 8.2

**Essential Question** How does the value of *c* affect the graph of  $f(x) = ax^2 + c$ ?



## **EXPLORATION:** Graphing $y = ax^2 + c$

#### Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

**Work with a partner.** Sketch the graphs of the functions in the same coordinate plane. What do you notice?

**a.** 
$$f(x) = x^2$$
 and  $g(x) = x^2 + 2$ 



**b.** 
$$f(x) = 2x^2$$
 and  $g(x) = 2x^2 - 2$ 



## 8.2 Graphing $f(x) = ax^2 + c$ (continued)

### **EXPLORATION:** Finding *x*-Intercepts of Graphs

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

**Work with a partner.** Graph each function. Find the *x*-intercepts of the graph. Explain how you found the *x*-intercepts.

**a.** 
$$y = x^2 - 7$$



**b.** 
$$y = -x^2 + 1$$



### **Communicate Your Answer**

- **3.** How does the value of c affect the graph of  $f(x) = ax^2 + c$ ?
- 4. Use a graphing calculator to verify your answers to Question 3.
- 5. The figure shows the graph of a quadratic function of the form  $y = ax^2 + c$ . Describe possible values of *a* and *c*. Explain your reasoning.



# . . .

Notetaking with Vocabulary For use after Lesson 8.2

In your own words, write the meaning of each vocabulary term.

zero of a function

8.2

# Core Concepts

## Graphing $f(x) = ax^2 + c$

- When c > 0, the graph of  $f(x) = ax^2 + c$  is a vertical translation *c* units up of the graph of  $f(x) = ax^2$ .
- When c < 0, the graph of  $f(x) = ax^2 + c$  is a vertical translation |c| units down of the graph of  $f(x) = ax^2$ .

The vertex of the graph of  $f(x) = ax^2 + c$  is (0, c), and the axis of symmetry is x = 0.

#### Notes:



Date

# 8.2 Notetaking with Vocabulary (continued)

## **Extra Practice**

In Exercises 1–4, graph the function. Compare the graph to the graph of  $f(x) = x^2$ .

**1.**  $g(x) = x^2 + 5$ 





### **3.** $n(x) = -3x^2 - 2$



**4.** 
$$q(x) = \frac{1}{2}x^2 - 4$$



### 8.2 Notetaking with Vocabulary (continued)

In Exercises 5–8, find the zeros of the function.

**5.**  $y = -x^2 + 1$  **6.**  $y = -4x^2 + 16$ 

**7.** 
$$n(x) = -x^2 + 64$$
 **8.**  $p(x) = -9x^2 + 1$ 

#### In Exercises 9 and 10, sketch a parabola with the given characteristics.

**9.** The parabola opens down, and the vertex is (0, 5).



**10.** The lowest point on the parabola is (0, 4).



- **11.** The function  $f(t) = -16t^2 + s_0$  represents the approximate height (in feet) of a falling object t seconds after it is dropped from an initial height  $s_0$  (in feet). A tennis ball falls from a height of 400 feet.
  - **a.** After how many seconds does the tennis ball hit the ground?
  - **b.** Suppose the initial height is decreased by 384 feet. After how many seconds does the ball hit the ground?