1

# **B.1** Graphing $f(x) = ax^2$ . For use with Exploration 8.1

**Essential Question** What are some of the characteristics of the graph of a quadratic function of the form  $f(x) = ax^2$ ?

## **EXPLORATION:** Graphing Quadratic Functions

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Graph each quadratic function. Compare each graph to the graph of  $f(x) = x^2$ .

**a.** 
$$g(x) = 3x^2$$



**c.** 
$$g(x) = -0.2x^2$$



**b.** 
$$g(x) = -5x^2$$



**d.** 
$$g(x) = \frac{1}{10}x^2$$



# 8.1 Graphing $f(x) = ax^2$ (continued)

# Communicate Your Answer

2. What are some of the characteristics of the graph of a quadratic function of the form  $f(x) = ax^2$ ?

**3.** How does the value of *a* affect the graph of  $f(x) = ax^2$ ? Consider 0 < a < 1, a > 1, -1 < a < 0, and a < -1. Use a graphing calculator to verify your answers.

4. The figure shows the graph of a quadratic function of the form  $y = ax^2$ . Which of the intervals in Question 3 describes the value of *a*? Explain your reasoning.





In your own words, write the meaning of each vocabulary term.

quadratic function

parabola

vertex

axis of symmetry

# Core Concepts

#### **Characteristics of Quadratic Functions**

The *parent quadratic function* is  $f(x) = x^2$ . The graphs of all other quadratic functions are *transformations* of the graph of the parent quadratic function.

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the **vertex.** The vertex of the graph of  $f(x) = x^2$ is (0, 0).



The vertical line that divides the parabola into two symmetric parts is the **axis of symmetry.** The axis of symmetry passes through the vertex. For the graph of  $f(x) = x^2$ , the axis of symmetry is the *y*-axis, or x = 0.

#### Notes:

#### 8.1 Notetaking with Vocabulary (continued)

#### Graphing $f(x) = ax^2$ When a > 0

- When 0 < a < 1, the graph of f(x) = ax<sup>2</sup> is a vertical shrink of the graph of f(x) = x<sup>2</sup>.
- When a > 1, the graph of f(x) = ax<sup>2</sup> is a vertical stretch of the graph of f(x) = x<sup>2</sup>.



## Graphing $f(x) = ax^2$ When a < 0

- When -1 < a < 0, the graph of  $f(x) = ax^2$  is a vertical shrink with a reflection in the *x*-axis of the graph of  $f(x) = x^2$ .
- When a < -1, the graph of  $f(x) = ax^2$  is a vertical stretch with a reflection in the *x*-axis of the graph of  $f(x) = x^2$ .

# $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

#### Notes:

## **Extra Practice**

In Exercises 1 and 2, identify characteristics of the quadratic function and its graph.





## 8.1 Notetaking with Vocabulary (continued)

In Exercises 3–8, graph the function. Compare the graph to the graph of  $f(x) = x^2$ .



In Exercises 9 and 10, determine whether the statement is *always, sometimes,* or *never* true. Explain your reasoning.

**9.** The graph of  $g(x) = ax^2$  is wider than the graph of  $f(x) = x^2$  when a > 0.

**10.** The graph of  $g(x) = ax^2$  is narrower than the graph of  $f(x) = x^2$  when |a| < 1.