\qquad

7.7 Factoring Special Products
 For use with Exploration 7.7

Essential Question How can you recognize and factor special products?

1 EXPLORATION: Factoring Special Products
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use algebra tiles to write each polynomial as the product of two binomials. Check your answer by multiplying. State whether the product is a "special product" that you studied in Section 7.3.
a. $4 x^{2}-1=$ \qquad

b. $4 x^{2}-4 x+1=$ \qquad

c. $4 x^{2}+4 x+1=$ \qquad
d. $4 x^{2}-6 x+2=$ \qquad

\qquad

7.7 Factoring Special Products (continued)

2 EXPLORATION: Factoring Special Products

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use algebra tiles to complete the rectangular arrays in three different ways, so that each way represents a different special product. Write each special product in standard form and in factored form.

Communicate Your Answer

3. How can you recognize and factor special products? Describe a strategy for recognizing which polynomials can be factored as special products.
4. Use the strategy you described in Question 3 to factor each polynomial.
a. $25 x^{2}+10 x+1$
b. $25 x^{2}-10 x+1$
c. $25 x^{2}-1$
\qquad
7.7

Notetaking with Vocabulary

For use after Lesson 7.7
In your own words, write the meaning of each vocabulary term. polynomial
trinomial

Core Concepts

Difference of Two Squares Pattern

Algebra
$a^{2}-b^{2}=(a+b)(a-b)$

Example

$$
x^{2}-9=x^{2}-3^{2}=(x+3)(x-3)
$$

Notes:

Perfect Square Trinomial Pattern

Algebra

$a^{2}+2 a b+b^{2}=(a+b)^{2}$
$a^{2}-2 a b+b^{2}=(a-b)^{2}$

Example

$$
\begin{aligned}
x^{2}+6 x+9 & =x^{2}+2(x)(3)+3^{2} \\
& =(x+3)^{2}
\end{aligned}
$$

$$
x^{2}-6 x+9=x^{2}-2(x)(3)+3^{2}
$$

$$
=(x-3)^{2}
$$

Notes:
\qquad

7.7 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-6, factor the polynomial.

1. $s^{2}-49$
2. $t^{2}-81$
3. $16-x^{2}$
4. $4 g^{2}-25$
5. $36 h^{2}-121$
6. $81-49 k^{2}$

In Exercises 7-12, use a special product pattern to evaluate the expression.
7. $57^{2}-53^{2}$
8. $38^{2}-32^{2}$
9. $68^{2}-64^{2}$
10. $45^{2}-40^{2}$
11. $79^{2}-71^{2}$
12. $86^{2}-84^{2}$
\qquad
\qquad

7.7 Notetaking with Vocabulary (continued)

In Exercises 13-18, factor the polynomial.

13. $x^{2}+16 x+64$
14. $p^{2}+28 p+196$
15. $r^{2}-26 r+169$
16. $a^{2}-18 a+81$
17. $36 c^{2}+84 c+49$
18. $100 x^{2}-20 x+1$

In Exercises 19-24, solve the equation.
19. $x^{2}-144=0$
20. $9 y^{2}=49$
21. $c^{2}+14 c+49=0$
22. $d^{2}-4 d+4=0$
23. $n^{2}+\frac{2}{3} n=-\frac{1}{9}$
24. $-\frac{6}{5} k+\frac{9}{25}=-k^{2}$
25. The dimensions of a rectangular prism are $(x+1)$ feet by $(x+2)$ feet by 4 feet. The volume of the prism is $(24 x-1)$ cubic feet. What is the value of x ?

