Essential Question How can you recognize and factor special products?

1 EXPLORATION: Factoring Special Products

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to write each polynomial as the product of two binomials. Check your answer by multiplying. State whether the product is a “special product” that you studied in Section 7.3.

- **a.** $4x^2 - 1 = \underline{}$
- **b.** $4x^2 - 4x + 1 = \underline{}$

- **c.** $4x^2 + 4x + 1 = \underline{}$
- **d.** $4x^2 - 6x + 2 = \underline{}$
7.7 Factoring Special Products (continued)

EXPLORATION: Factoring Special Products

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to complete the rectangular arrays in three different ways, so that each way represents a different special product. Write each special product in standard form and in factored form.

Communicate Your Answer

3. How can you recognize and factor special products? Describe a strategy for recognizing which polynomials can be factored as special products.

4. Use the strategy you described in Question 3 to factor each polynomial.

 a. \(25x^2 + 10x + 1\)
 b. \(25x^2 - 10x + 1\)
 c. \(25x^2 - 1\)
7.7 Notetaking with Vocabulary
For use after Lesson 7.7

In your own words, write the meaning of each vocabulary term.

polynomial

trinomial

Core Concepts

Difference of Two Squares Pattern

Algebra

\(a^2 - b^2 = (a + b)(a - b) \)

Example

\(x^2 - 9 = x^2 - 3^2 = (x + 3)(x - 3) \)

Notes:

Perfect Square Trinomial Pattern

Algebra

\(a^2 + 2ab + b^2 = (a + b)^2 \)

\(a^2 - 2ab + b^2 = (a - b)^2 \)

Example

\(x^2 + 6x + 9 = x^2 + 2(x)(3) + 3^2 = (x + 3)^2 \)

\(x^2 - 6x + 9 = x^2 - 2(x)(3) + 3^2 = (x - 3)^2 \)

Notes:
Extra Practice

In Exercises 1–6, factor the polynomial.

1. \(s^2 - 49 \)
2. \(t^2 - 81 \)
3. \(16 - x^2 \)

4. \(4g^2 - 25 \)
5. \(36h^2 - 121 \)
6. \(81 - 49k^2 \)

In Exercises 7–12, use a special product pattern to evaluate the expression.

7. \(57^2 - 53^2 \)
8. \(38^2 - 32^2 \)
9. \(68^2 - 64^2 \)

10. \(45^2 - 40^2 \)
11. \(79^2 - 71^2 \)
12. \(86^2 - 84^2 \)
In Exercises 13–18, factor the polynomial.

13. \(x^2 + 16x + 64 \)
14. \(p^2 + 28p + 196 \)
15. \(r^2 - 26r + 169 \)

16. \(a^2 - 18a + 81 \)
17. \(36c^2 + 84c + 49 \)
18. \(100x^2 - 20x + 1 \)

In Exercises 19–24, solve the equation.

19. \(x^2 - 144 = 0 \)
20. \(9y^2 = 49 \)
21. \(c^2 + 14c + 49 = 0 \)

22. \(d^2 - 4d + 4 = 0 \)
23. \(n^2 + \frac{2}{3}n = -\frac{1}{9} \)
24. \(-\frac{6}{5}k + \frac{9}{25} = -k^2 \)

25. The dimensions of a rectangular prism are \((x + 1)\) feet by \((x + 2)\) feet by 4 feet. The volume of the prism is \((24x - 1)\) cubic feet. What is the value of \(x\)?