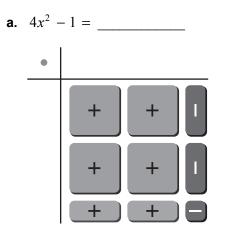
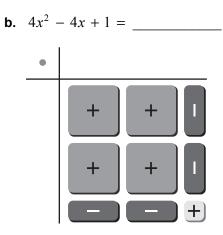
1

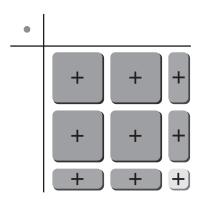
7.7

Factoring Special Products

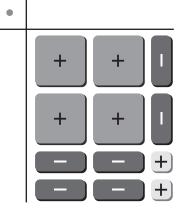

For use with Exploration 7.7


Essential Question How can you recognize and factor special products?

EXPLORATION: Factoring Special Products

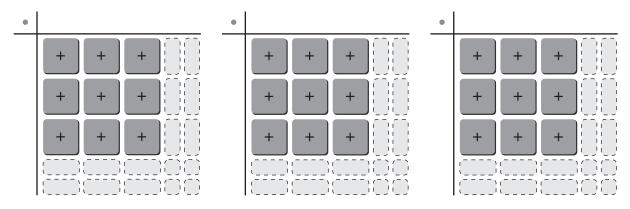

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to write each polynomial as the product of two binomials. Check your answer by multiplying. State whether the product is a "special product" that you studied in Section 7.3.



c.
$$4x^2 + 4x + 1 =$$

d.
$$4x^2 - 6x + 2 =$$



7.7 Factoring Special Products (continued)

2 **EXPLORATION:** Factoring Special Products

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use algebra tiles to complete the rectangular arrays in three different ways, so that each way represents a different special product. Write each special product in standard form and in factored form.

Communicate Your Answer

3. How can you recognize and factor special products? Describe a strategy for recognizing which polynomials can be factored as special products.

4. Use the strategy you described in Question 3 to factor each polynomial.

a.
$$25x^2 + 10x + 1$$
 b. $25x^2 - 10x + 1$ **c.** $25x^2 - 1$

In your own words, write the meaning of each vocabulary term.

polynomial

trinomial

Core Concepts

Difference of Two Squares Pattern

Algebra

Example

$$a^2 - b^2 = (a + b)(a - b)$$

$$x^{2} - 9 = x^{2} - 3^{2} = (x + 3)(x - 3)$$

Notes:

Perfect Square Trinomial Pattern

Algebra	Example
$a^2 + 2ab + b^2 = (a + b)^2$	$x^{2} + 6x + 9 = x^{2} + 2(x)(3) + 3^{2}$
	$= (x + 3)^2$
$a^2 - 2ab + b^2 = (a - b)^2$	$x^{2} - 6x + 9 = x^{2} - 2(x)(3) + 3^{2}$
	$= (x - 3)^2$

Notes:

Name

7.7 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–6, factor the polynomial.

1. $s^2 - 49$ **2.** $t^2 - 81$ **3.** $16 - x^2$

4.
$$4g^2 - 25$$
 5. $36h^2 - 121$ **6.** $81 - 49k^2$

In Exercises 7–12, use a special product pattern to evaluate the expression.

7. $57^2 - 53^2$ **8.** $38^2 - 32^2$ **9.** $68^2 - 64^2$

10.
$$45^2 - 40^2$$
 11. $79^2 - 71^2$ **12.** $86^2 - 84^2$

7.7 Notetaking with Vocabulary (continued)

In Exercises 13–18, factor the polynomial.

13. $x^2 + 16x + 64$ **14.** $p^2 + 28p + 196$ **15.** $r^2 - 26r + 169$

16. $a^2 - 18a + 81$ **17.** $36c^2 + 84c + 49$ **18.** $100x^2 - 20x + 1$

In Exercises 19–24, solve the equation.

19. $x^2 - 144 = 0$ **20.** $9y^2 = 49$ **21.** $c^2 + 14c + 49 = 0$

22.
$$d^2 - 4d + 4 = 0$$
 23. $n^2 + \frac{2}{3}n = -\frac{1}{9}$ **24.** $-\frac{6}{5}k + \frac{9}{25} = -k^2$

25. The dimensions of a rectangular prism are (x + 1) feet by (x + 2) feet by 4 feet. The volume of the prism is (24x - 1) cubic feet. What is the value of x?