\qquad

7.4

Solving Polynomial Equations in Factored Form

 For use with Exploration 7.4
Essential Question How can you solve a polynomial equation?

1 EXPLORATION: Matching Equivalent Forms of an Equation

Work with a partner. An equation is considered to be in factored form when the product of the factors is equal to 0 . Match each factored form of the equation with its equivalent standard form and nonstandard form.

2 EXPLORATION: Writing a Conjecture

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Substitute $1,2,3,4,5$, and 6 for x in each equation and determine whether the equation is true. Organize your results in the table. Write a conjecture describing what you discovered.

	Equation	$\boldsymbol{x}=\mathbf{1}$	$\boldsymbol{x}=\mathbf{2}$	$\boldsymbol{x}=\mathbf{3}$	$\boldsymbol{x}=\mathbf{4}$	$\boldsymbol{x}=\mathbf{5}$	$\boldsymbol{x}=\mathbf{6}$
a.	$(x-1)(x-2)=0$						
b.	$(x-2)(x-3)=0$						
c.	$(x-3)(x-4)=0$						
d.	$(x-4)(x-5)=0$						
e.	$(x-5)(x-6)=0$						
f.	$(x-6)(x-1)=0$						

\qquad
7.4 Solving Polynomial Equations in Factored Form (continued)

3 EXPLORATION: Special Properties of 0 and 1

Work with a partner. The numbers 0 and 1 have special properties that are shared by no other numbers. For each of the following, decide whether the property is true for 0,1 , both, or neither. Explain your reasoning.
a. When you add \qquad to a number n, you get n.
b. If the product of two numbers is \qquad , then at least one of the numbers is 0 .
c. The square of \qquad is equal to itself.
d. When you multiply a number n by \qquad , you get n.
e. When you multiply a number n by \qquad , you get 0 .
f. The opposite of \qquad is equal to itself.

Communicate Your Answer

4. How can you solve a polynomial equation?
5. One of the properties in Exploration 3 is called the Zero-Product Property. It is one of the most important properties in all of algebra. Which property is it? Why do you think it is called the Zero-Product Property? Explain how it is used in algebra and why it so important.
\qquad

Notetaking with Vocabulary

In your own words, write the meaning of each vocabulary term.
factored form

Zero-Product Property
roots
repeated roots

Core Concepts

Zero-Product Property

Words If the product of two real numbers is 0 , then at least one of the numbers is 0 .

Algebra \quad If a and b are real numbers and $a b=0$, then $a=0$ or $b=0$.
Notes:
\qquad
\qquad

7.4 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-12, solve the equation.

1. $x(x+5)=0$
2. $a(a-12)=0$
3. $5 p(p-2)=0$
4. $(c-2)(c+1)=0$
5. $(2 b-6)(3 b+18)=0$
6. $(3-5 s)(-3+5 s)=0$
7. $(x-3)^{2}=0$
8. $(3 d+7)(5 d-6)=0$
9. $(2 t+8)(2 t-8)=0$
10. $(w+4)^{2}(w+1)=0 \quad$ 11. $g(6-3 g)(6+3 g)=0 \quad$ 12. $(4-m)\left(8+\frac{2}{3} m\right)(-2-3 m)=0$
\qquad

7.4 Notetaking with Vocabulary (continued)

In Exercises 13-18, factor the polynomial.
13. $6 x^{2}+3 x$
14. $4 y^{4}-20 y^{3}$
15. $18 u^{4}-6 u$
16. $7 z^{7}+2 z^{6}$
17. $24 h^{3}+8 h$
18. $15 f^{4}-45 f$

In Exercises 19-24, solve the equation.
19. $6 k^{2}+k=0$
20. $35 n-49 n^{2}=0$
21. $4 z^{2}+52 z=0$
22. $6 x^{2}=-72 x$
23. $22 s=11 s^{2}$
24. $7 p^{2}=21 p$
25. A boy kicks a ball in the air. The height y (in feet) above the ground of the ball is modeled by the equation $y=-16 x^{2}+80 x$, where x is the time (in seconds) since the ball was kicked. Find the roots of the equation when $y=0$. Explain what the roots mean in this situation.

