\qquad

7.1

Adding and Subtracting Polynomials

For use with Exploration 7.1

Essential Question How can you add and subtract polynomials?

1 EXPLORATION: Adding Polynomials
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Write the expression modeled by the algebra tiles in each step.
Step 1

$$
(3 x+2)+(x-5)
$$

Step 2

Step 3

Step 4

2 EXPLORATION: Subtracting Polynomials
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Write the expression modeled by the algebra tiles in each step.

$$
\left(x^{2}+2 x+2\right)-(x-1)
$$

Step 2

\qquad
Step 3

\qquad
7.1 Adding and Subtracting Polynomials (continued)

2 EXPLORATION: Subtracting Polynomials (continued)

\qquad

\qquad

Communicate Your Answer

3. How can you add and subtract polynomials?
4. Use your methods in Question 3 to find each sum or difference.
a. $\left(x^{2}+2 x-1\right)+\left(2 x^{2}-2 x+1\right)$
b. $(4 x+3)+(x-2)$
c. $\left(x^{2}+2\right)-\left(3 x^{2}+2 x+5\right)$
d. $(2 x-3 x)-\left(x^{2}-2 x+4\right)$
\qquad

7.1
 Notetaking with Vocabulary
 For use after Lesson 7.1

In your own words, write the meaning of each vocabulary term. monomial
degree of a monomial
polynomial
binomial
trinomial
degree of a polynomial
standard form
leading coefficient
closed

Notes:
\qquad

7.1 Notetaking with Vocabulary (continued)

Core Concepts

Polynomials

A polynomial is a monomial or a sum of monomials. Each monomial is called a term of the polynomial. A polynomial with two terms is a binomial. A polynomial with three terms is a trinomial.

$$
\begin{array}{cc}
\text { Binomial } & \text { Trinomial } \\
5 x+2 & x^{2}+5 x+2
\end{array}
$$

The degree of a polynomial is the greatest degree of its terms. A polynomial in one variable is in standard form when the exponents of the terms decrease from left to right. When you write a polynomial in standard form, the coefficient of the first term is the leading coefficient.

Notes:

Extra Practice

In Exercises 1-8, find the degree of the monomial.

1. $-6 s$
2. w
3. 8
4. $-2 a b c$
5. $7 x^{2} y$
6. $4 r^{2} s^{3} t$
7. $10 m n^{3}$
8. $\frac{2}{3}$
\qquad
\qquad

7.1 Notetaking with Vocabulary (continued)

In Exercises 9-12, write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms.
9. $x+3 x^{2}+5$
10. $\sqrt{5} y$
11. $3 x^{5}+6 x^{8}$
12. $f^{2}-2 f+f^{4}$

In Exercises 13-16, find the sum.
13. $(-4 x+9)+(6 x-14)$
14. $(-3 a-2)+(7 a+5)$
15. $\left(x^{2}+3 x+5\right)+\left(-x^{2}+6 x-4\right)$
16. $\left(t^{2}+3 t^{3}-3\right)+\left(2 t^{2}+7 t-2 t^{3}\right)$

In Exercises 17-20, find the difference.
17. $(g-4)-(3 g-6)$
18. $(-5 h-2)-(7 h+6)$
19. $\left(-x^{2}-5\right)-\left(-3 x^{2}-x-8\right)$
20. $\left(k^{2}+6 k^{3}-4\right)-\left(5 k^{3}+7 k-3 k^{2}\right)$

