Name	Date
------	------

Geometric Sequences For use with Exploration 6.6

Essential Question How can you use a geometric sequence to describe a pattern?

In a **geometric sequence**, the ratio between each pair of consecutive terms is the same. This ratio is called the **common ratio**.

1 **EXPLORATION**: Describing Calculator Patterns

Work with a partner. Enter the keystrokes on a calculator and record the results in the table. Describe the pattern.

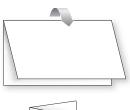
Step	1	2	3	4	5
Calculator					
display					

b. Step 1		6	4	
Step 2	×		5	
Step 3	×		5	
Step 4	×		5	
Step 5	×		5	

Step	1	2	3	4	5
Calculator					
display					

c. Use a calculator to make your own sequence. Start with any number and multiply by 3 each time. Record your results in the table.

Step	1	2	3	4	5
Calculator display					


d. Part (a) involves a geometric sequence with a common ratio of 2. What is the common ratio in part (b)? part (c)?

6.6 Geometric Sequences (continued)

2 **EXPLORATION:** Folding a Sheet of Paper

Work with a partner. A sheet of paper is about 0.1 millimeter thick.

a. How thick will it be when you fold it in half once? twice? three times?

b. What is the greatest number of times you can fold a piece of paper in half? How thick is the result?

c. Do you agree with the statement below? Explain your reasoning.

"If it were possible to fold the paper in half 15 times, it would be taller than you."

Communicate Your Answer

- **3.** How can you use a geometric sequence to describe a pattern?
- **4.** Give an example of a geometric sequence from real life other than paper folding.

Notetaking with Vocabulary For use after Lesson 6.6

In your own words, write the meaning of each vocabulary term.

geometric sequence

common ratio

Core Concepts

Geometric Sequence

In a **geometric sequence**, the ratio between each pair of consecutive terms is the same. This ratio is called the **common ratio**. Each term is found by multiplying the previous term by the common ratio.

1, 5, 25, 125, . . . Terms of a geometric sequence
$$\times$$
 5 \times 5 \times common ratio

Notes:

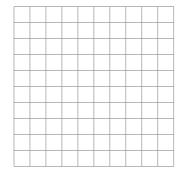
Equation for a Geometric Sequence

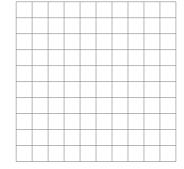
Let a_n be the *n*th term of a geometric sequence with first term a_1 and common ratio r. The *n*th term is given by

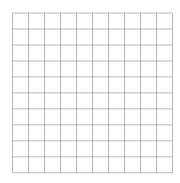
$$a_n = a_1 r^{n-1}.$$

Notes:

Notetaking with Vocabulary (continued)

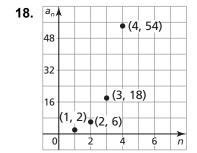

Extra Practice

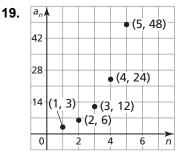

In Exercises 1-6, determine whether the sequence is arithmetic, geometric, or neither. Explain your reasoning.

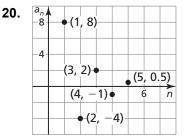

In Exercises 7–9, write the next three terms of the geometric sequence.

In Exercises 10-12, write the next three terms of the geometric sequence. Then graph the sequence.

10. 12, 6, 3,
$$\frac{3}{2}$$
, ...




Notetaking with Vocabulary (continued) 6.6


In Exercises 13–20, write an equation for the *n*th term of the geometric sequence. Then find a_6 .

- **13.** 6561, 2187, 729, 243, ... **14.** 8, -24, 72, -216, ... **15.** 3, 15, 75, 375, ...

- 16. 2 3 4 2916 972 324 108 \boldsymbol{a}_n
- 17. 3 n 1 2 4 11 44 176 704 \boldsymbol{a}_n

