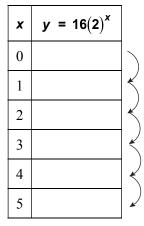
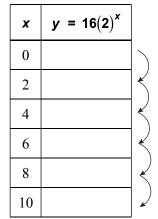
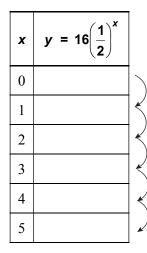
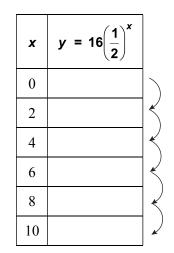
6.3 Exponential Functions For use with Exploration 6.3


Essential Question What are some of the characteristics of the graph of


an exponential function?

EXPLORATION: Exploring an Exponential Function

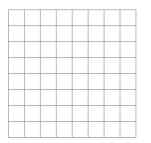

Work with a partner. Complete each table for the *exponential function* $y = 16(2)^{x}$. In each table, what do you notice about the values of x? What do you notice about the values of y?



EXPLORATION: Exploring an Exponential Function

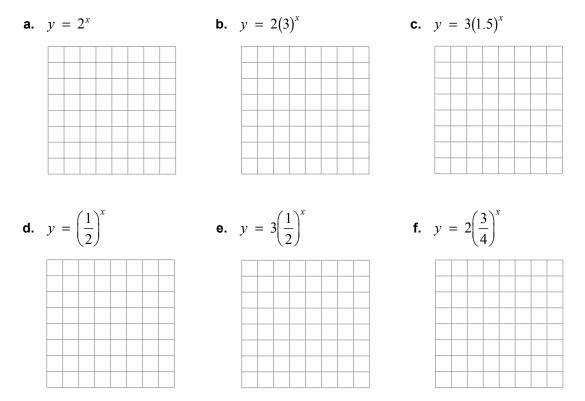
Work with a partner. Repeat Exploration 1 for the exponential function $y = 16 \left(\frac{1}{2}\right)^x$.

Do you think the statement below is true for any exponential function? Justify your answer.


"As the independent variable x changes by a constant amount, the dependent variable y is multiplied by a constant factor."

6.3 Exponential Functions (continued)

EXPLORATION: Graphing Exponential Functions

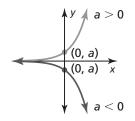

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

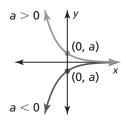
Work with a partner. Sketch the graphs of the functions given in Explorations 1 and 2. How are the graphs similar? How are they different?

Communicate Your Answer

- 4. What are some of the characteristics of the graph of an exponential function?
- **5.** Sketch the graph of each exponential function. Does each graph have the characteristics you described in Question 4? Explain your reasoning.

6.3 Notetaking with Vocabulary For use after Lesson 6.3

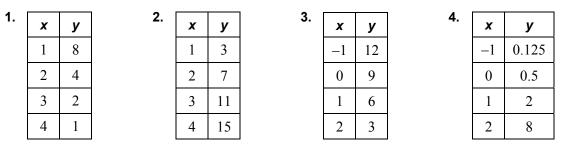

In your own words, write the meaning of each vocabulary term.


exponential function

Core Concepts

Graphing $y = ab^x$ When b > 1

Graphing $y = ab^x$ When 0 < b < 1

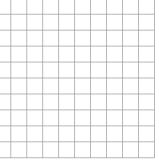


Notes:

6.3 Notetaking with Vocabulary (continued)

Extra Practice

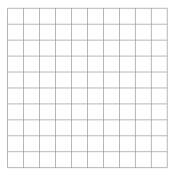
In Exercises 1–4, determine whether the table represents a *linear* or an *exponential* function. Explain.

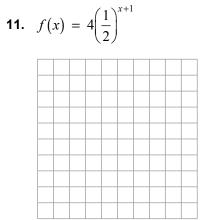

In Exercises 5–7, evaluate the function for the given value of *x*.

5. $y = 3^x$; x = 5**6.** $y = \left(\frac{1}{4}\right)^x$; x = 3**7.** $y = 3(4)^x$; x = 4

In Exercises 8 and 9, graph the function. Compare the graph to the graph of the parent function. Describe the domain and range of *f*.

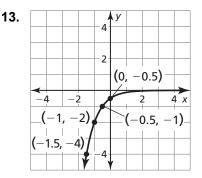
8. $f(x) = -2^x$ 9. f(x)

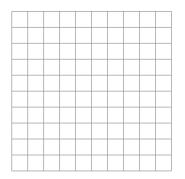

$$f(x) = 2\left(\frac{1}{4}\right)^x$$



6.3 Notetaking with Vocabulary (continued)

In Exercises 10 and 11, graph the function. Describe the domain and range.


10. $f(x) = 4^x - 2$ **11**



In Exercises 12 and 13, write an exponential function represented by the table or graph.

12.	x	0	1	2	3
	<i>f</i> (<i>x</i>)	3	18	108	648

14. Graph the function $f(x) = 2^x$. Then graph $g(x) = 2^x + 3$. How are the *y*-intercept, domain, and range affected by the translation?

