5.4

Solving Special Systems of Linear Equations For use with Exploration 5.4

Essential Question Can a system of linear equations have no solution or infinitely many solutions?

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. You invest \$450 for equipment to make skateboards. The materials for each skateboard cost \$20. You sell each skateboard for \$20.

a. Write the cost and revenue equations. Then complete the table for your cost C and your revenue R.

<i>x</i> (skateboards)	0	1	2	3	4	5	6	7	8	9	10
C (dollars)											
R (dollars)											

b. When will your company break even? What is wrong?

EXPLORATION: Writing and Analyzing a System

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. A necklace and matching bracelet have two types of beads. The necklace has 40 small beads and 6 large beads and weighs 10 grams. The bracelet has 20 small beads and 3 large beads and weighs 5 grams. The threads holding the beads have no significant weight.

- **a.** Write a system of linear equations that represents the situation. Let *x* be the weight (in grams) of a small bead and let *y* be the weight (in grams) of a large bead.
- **b.** Graph the system in the coordinate plane shown. What do you notice about the two lines?
- **c.** Can you find the weight of each type of bead? Explain your reasoning.

5.4 Solving Special Systems of Linear Equations (continued)

Communicate Your Answer

3. Can a system of linear equations have no solution or infinitely many solutions? Give examples to support your answers.

4. Does the system of linear equations represented by each graph have *no solution*, *one solution*, or *infinitely many solutions*? Explain.

5.4 Notetaking with Vocabulary For use after Lesson 5.4

In your own words, write the meaning of each vocabulary term.

parallel

Core Concepts

Solutions of Systems of Linear Equations

A system of linear equations can have *one solution*, *no solution*, or *infinitely many solutions*.

One solution

No solution

Infinitely many solutions

The lines intersect.

The lines are parallel.

The lines are the same.

Notes:

5.4 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–18, solve the system of linear equations.

1.
$$y = 3x - 7$$
2. $y = 5x - 1$ 3. $2x - 3y = 10$ $y = 3x + 4$ $y = -5x + 5$ $-2x + 3y = -10$

4.
$$x + 3y = 6$$

 $-x - 3y = 3$
5. $6x + 6y = -3$
 $-6x - 6y = 3$
6. $2x - 5y = -3$
 $3x + 5y = 8$

7. $2x + 3y = 1$	8. $4x + 3y = 17$	9. $3x - 2y = 6$
-2x + 3y = -7	-8x - 6y = 34	-9x + 6y = -18

5.4 Notetaking with Vocabulary (continued)

10.
$$-2x + 5y = -21$$
11. $3x - 8y = 3$ **12.** $18x + 12y = 24$ $2x - 5y = 21$ $8x - 3y = 8$ $3x + 2y = 6$

13.
$$15x - 6y = 9$$
14. $-3x - 5y = 8$ **15.** $2x - 4y = 2$ $5x - 2y = 27$ $6x + 10y = -16$ $-2x - 4y = 6$

16.
$$5x + 7y = 7$$
17. $y = \frac{2}{3}x + 7$
18. $-3x + 5y = 15$
 $7x + 5y = 5$
 $y = \frac{2}{3}x - 5$
 $9x - 15y = -45$

19. You have \$15 in savings. Your friend has \$25 in savings. You both start saving \$5 per week. Write a system of linear equations that represents this situation. Will you ever have the same amount of savings as your friend? Explain.