\qquad

Solving Systems of Linear Equations by Substitution For use with Exploration 5.2

Essential Question How can you use substitution to solve a system of linear equations?

1 EXPLORATION: Using Substitution to Solve Systems
Work with a partner. Solve each system of linear equations using two methods.

Method $1 \quad$ Solve for \boldsymbol{x} first.

Solve for x in one of the equations. Substitute the expression for x into the other equation to find y. Then substitute the value of y into one of the original equations to find x.

Method 2 Solve for \boldsymbol{y} first.

Solve for y in one of the equations. Substitute the expression for y into the other equation to find x. Then substitute the value of x into one of the original equations to find y.

Is the solution the same using both methods? Explain which method you would prefer to use for each system.
a. $x+y=-7$
$-5 x+y=5$
b. $x-6 y=-11$
$3 x+2 y=7$
c. $4 x+y=-1$
$3 x-5 y=-18$
\qquad
5.2 Solving Systems of Linear Equations by Substitution (continued)

2 EXPLORATION: Writing and Solving a System of Equations

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

a. Write a random ordered pair with integer coordinates. One way to do this is to use a graphing calculator. The ordered pair generated at the right is $(-2,-3)$.

c. Exchange systems with your partner and use one of the methods from Exploration 1 to solve the system. Explain your choice of method.

Communicate Your Answer

3. How can you use substitution to solve a system of linear equations?
4. Use one of the methods from Exploration 1 to solve each system of linear equations. Explain your choice of method. Check your solutions.
a. $x+2 y=-7$
$2 x-y=-9$
b. $x-2 y=-6$
$2 x+y=-2$
c. $-3 x+2 y=-10$
$-2 x+y=-6$
d. $3 x+2 y=13$
$x-3 y=-3$
e. $3 x-2 y=9$
$-x-3 y=8$
f. $3 x-y=-6$
$4 x+5 y=11$
\qquad

Notetaking with Vocabulary

 For use after Lesson 5.2In your own words, write the meaning of each vocabulary term. system of linear equations
solution of a system of linear equations

Core Concepts

Solving a System of Linear Equations by Substitution

Step 1 Solve one of the equations for one of the variables.
Step 2 Substitute the expression from Step 1 into the other equation and solve for the other variable.

Step 3 Substitute the value from Step 2 into one of the original equations and solve.
Notes:
\qquad
\qquad

5.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-18, solve the system of linear equations by substitution. Check your solution.

1. $2 x+2 y=10$
$y=5+x$
2. $2 x-y=3$
$x=-2 y-1$
3. $x-3 y=-1$
$x=y$
4. $x-2 y=-3$
$y=x+1$
5. $2 x+y=3$
$x=3 y+5$
6. $3 x+y=-5$
$y=2 x+5$
7. $y=2 x+8$
$y=-2 x$
8. $y=\frac{3}{4} x+1$
$y=\frac{1}{4} x+3$
9. $2 x-3 y=0$
$y=4$
\qquad

5.2 Notetaking with Vocabulary (continued)

10. $x+y=3$
$2 x+4 y=8$
11. $y=\frac{1}{2} x+1$
$y=-\frac{1}{2} x+9$
12. $3 x-2 y=3$
$4 x-y=4$
13. $7 x-4 y=8$
$5 x-y=2$
14. $y=\frac{3}{5} x-12$
$y=\frac{1}{3} x-8$
15. $3 x-4 y=-1$
$5 x+2 y=7$
16. $y=-x+3$
$x+2 y=0$
17. $y-5 x=-2$
$-4 x+y=2$
18. $4 x-8 y=3$
$8 x+4 y=1$
19. An adult ticket to a museum costs $\$ 3$ more than a children's ticket. When 200 adult tickets and 100 children's tickets are sold, the total revenue is $\$ 2100$. What is the cost of a children's ticket?
