5.

Solving Systems of Linear Equations by Graphing For use with Exploration 5.1

Essential Question How can you solve a system of linear equations?

EXPLORATION: Writing a System of Linear Equations

Work with a partner. Your family opens a bed-and-breakfast. They spend \$600 preparing a bedroom to rent. The cost to your family for food and utilities is \$15 per night. They charge \$75 per night to rent the bedroom.

a. Write an equation that represents the costs.

 $\frac{\text{Cost, } C}{(\text{in dollars})} = \frac{\$15 \text{ per}}{\text{night}} \bullet \frac{\text{Number of}}{\text{nights, } x} + \600

b. Write an equation that represents the revenue (income).

 $\frac{\text{Revenue, } R}{(\text{in dollars})} = \frac{\$75 \text{ per}}{\text{night}} \bullet \frac{\text{Number of}}{\text{nights, } x}$

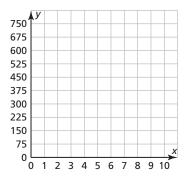
c. A set of two (or more) linear equations is called a **system of linear equations.** Write the system of linear equations for this problem.

EXPLORATION: Using a Table or Graph to Solve a System

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use the cost and revenue equations from Exploration 1 to determine how many nights your family needs to rent the bedroom before recovering the cost of preparing the bedroom. This is the *break-even point*.

a. Complete the table.


x (nights)	0	1	2	3	4	5	6	7	8	9	10	11
C (dollars)												
R (dollars)												

2

5.1 Solving Systems of Linear Equations by Graphing (continued)

EXPLORATION: Using a Table or Graph to Solve a System (continued)

- **b.** How many nights does your family need to rent the bedroom before breaking even?
- **c.** In the same coordinate plane, graph the cost equation and the revenue equation from Exploration 1.

d. Find the point of intersection of the two graphs. What does this point represent? How does this compare to the break-even point in part (b)? Explain.

Communicate Your Answer

- **3.** How can you solve a system of linear equations? How can you check your solution?
- **4.** Solve each system by using a table or sketching a graph. Explain why you chose each method. Use a graphing calculator to check each solution.

а.	y = -4.3x - 1.3	b.	y = x	C.	y = -x - 1
	y = 1.7x + 4.7		y = -3x + 8		y = 3x + 5

5.1 Notetaking with Vocabulary For use after Lesson 5.1

In your own words, write the meaning of each vocabulary term.

system of linear equations

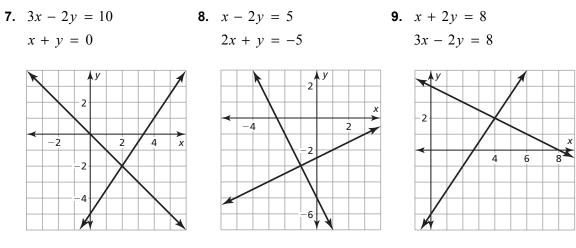
solution of a system of linear equations

Core Concepts

Solving a System of Linear Equations by Graphing

- **Step 1** Graph each equation in the same coordinate plane.
- **Step 2** Estimate the point of intersection.
- **Step 3** Check the point from Step 2 by substituting for *x* and *y* in each equation of the original system.
- Notes:

Notetaking with Vocabulary (continued) 5.1

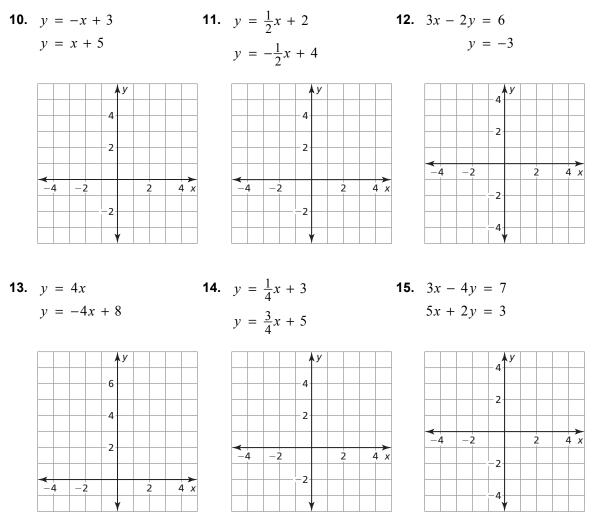

Extra Practice

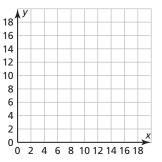
In Exercises 1-6, tell whether the ordered pair is a solution of the system of linear equations.

1.
$$(3,1); x + y = 4$$
2. $(1,3); x - y = -2$ **3.** $(2,0); y = x - 2$ $2x - y = 3$ $2x + y = 5$ $y = -3x + 6$

4.
$$(-1, -2); x - 2y = 3$$

 $2x - y = 0$
5. $(-2, 3); 3x - 2y = -12$
 $2x + 4y = 9$
6. $(4, -3); 2x + 2y = 2$
 $3x - 3y = 21$


In Exercises 7–9, use the graph to solve the system of linear equations. Check your solution.


х

5.1 Notetaking with Vocabulary (continued)

In Exercises 10–15, solve the system of linear equations by graphing.

16. A test has twenty questions worth 100 points. The test consists of *x* true-false questions worth 4 points each and *y* multiple choice questions worth 8 points each. How many of each type of question are on the test?

