4.2

Writing Equations in Point-Slope Form For use with Exploration 4.2

Essential Question How can you write an equation of a line when you are given the slope and a point on the line?

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner.

- Sketch the line that has the given slope and passes through the given point.
- Find the *y*-intercept of the line.
- Write an equation of the line.

EXPLORATION: Writing a Formula

Work with a partner.

The point (x_1, y_1) is a given point on a nonvertical line. The point (x, y) is any other point on the line. Write an equation that represents the slope *m* of the line. Then rewrite this equation by multiplying each side by the difference of the *x*-coordinates to obtain the **point-slope form** of a linear equation.

4.2 Writing Equations in Point-Slope Form (continued)

3

EXPLORATION: Writing an Equation

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

For four months, you have saved \$25 per month. You now have \$175 in your savings account.

a. Use your result from Exploration 2 to write an equation that represents the balance *A* after *t* months.

b. Use a graphing calculator to verify your equation.

Communicate Your Answer

4. How can you write an equation of a line when you are given the slope and a point on the line?

5. Give an example of how to write an equation of a line when you are given the slope and a point on the line. Your example should be different from those above.

4.2 Notetaking with Vocabulary For use after Lesson 4.2

In your own words, write the meaning of each vocabulary term.

point-slope form

Core Concepts

Point-Slope Form

Words A linear equation written in the form $y - y_1 = m(x - x_1)$ is in **point-slope form**. The line passes through the point (x_1, y_1) , and the slope of the line is *m*.

Algebra
$$y - y_1 = m(x - x_1)$$

passes through (x_1, y_1)

Notes:

4.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–6, write an equation in point-slope form of the line that passes through the given point and has the given slope.

1.
$$(-2,1); m = -3$$
 2. $(3,5); m = 2$ **3.** $(-1,-2); m = -1$

4. (5,0);
$$m = \frac{4}{3}$$
 5. (0,4); $m = 7$ **6.** (1,2); $m = -\frac{1}{2}$

In Exercises 7–12, write an equation in slope-intercept form of the line shown.

4.2 Notetaking with Vocabulary (continued)

In Exercises 13–18, write a linear function *f* with the given values.

13.
$$f(-3) = -1, f(-2) = 4$$
 14. $f(-2) = 1, f(1) = 7$ **15.** $f(-1) = 2, f(3) = 3$

16.
$$f(0) = -2, f(4) = -1$$
 17. $f(1) = 0, f(0) = 8$ **18.** $f(3) = 5, f(2) = 6$

In Exercises 19 and 20, tell whether the data in the table can be modeled by a linear equation. Explain. If possible, write a linear equation that represents y as a function of x.

19.	x	-3	-1	0	1	3	2
	у	-110	-60	-35	-10	40	

20.	x	-3	-1	0	1	3
	у	-98	18	8	62	142

21. Craig is driving at a constant speed of 60 miles per hour. After driving 3 hours, his odometer reads 265 miles. Write a linear function *D* that represents the miles driven after *h* hours. What does the odometer read after 7 hours of continuous driving?