1

3.7 Graphing Absolute Value Functions

For use with Exploration 3.7

Essential Question How do the values of *a*, *h*, and *k* affect the graph of the absolute value function g(x) = a|x - h| + k?

EXPLORATION: Identifying Graphs of Absolute Value Functions

Work with a partner. Match each absolute value function with its graph. Then use a graphing calculator to verify your answers.

a. g(x) = -|x - 2| **b.** g(x) = |x - 2| + 2 **c.** g(x) = -|x + 2| - 2

d.
$$g(x) = |x - 2| - 2$$
 e. $g(x) = 2|x - 2|$ **f.** $g(x) = -|x + 2| + 2$

90 Algebra 1 Student Journal

Copyright © Big Ideas Learning, LLC All rights reserved.

3.7 Graphing Absolute Value Functions (continued)

Communicate Your Answer

2. How do the values of *a*, *h*, and *k* affect the graph of the absolute value function g(x) = a|x - h| + k?

3. Write the equation of the absolute value function whose graph is shown. Use a graphing calculator to verify your equation.

3.7 Notetaking with Vocabulary For use after Lesson 3.7

In your own words, write the meaning of each vocabulary term.

absolute value function

vertex

vertex form

Notes:

3.7 Notetaking with Vocabulary (continued)

Core Concepts

Absolute Value Function

An **absolute value function** is a function that contains an absolute value expression. The parent absolute value function is f(x) = |x|. The graph of f(x) = |x| is V-shaped and symmetric about the *y*-axis. The **vertex** is the point where the graph changes direction. The vertex of the graph of f(x) = |x| is (0, 0).

The domain of f(x) = |x| is all real numbers.

The range is $y \ge 0$.

Notes:

Vertex Form of an Absolute Value Function

An absolute value function written in the form g(x) = a |x - h| + k, where $a \neq 0$, is in **vertex form**. The vertex of the graph of g is (h, k).

Any absolute value function can be written in vertex form, and its graph is symmetric about the line x = h.

Notes:

Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–4, graph the function. Compare the graph to the graph of f(x) = |x|. Describe the domain and range.

1.
$$t(x) = \frac{1}{2}|x|$$

2.
$$u(x) = -|x|$$

x	-4	-2	0	2	4
<i>t(x</i>)					

x	-2	-1	0	1	2
u(x)					

		-4 y		
		2		
-4	-2		2	4 x
		-2		

3. p(x) = |x| - 3

x	-2	-1	0	1	2
<i>p</i> (<i>x</i>)					

		-4	l y				
		- 2-					
-4	-2			-	2		$\downarrow \rightarrow$
-4	-2	-2-		2	2	4	→ 4 <i>x</i>

4.
$$r(x) = |x + 2|$$

x	-4	-3	-2	-1	0
<i>r</i> (<i>x</i>)					

		-4	y		-	
		-2				
-4	-2			2		4 x
-4	-2	-2		2		4 x