\qquad

3.6
 Transformations of Graphs of Linear Functions For use with Exploration 3.6

Essential Question How does the graph of the linear function $f(x)=x$ compare to the graphs of $g(x)=f(x)+c$ and $h(x)=f(c x)$?

1 EXPLORATION: Comparing Graphs of Functions
Work with a partner. The graph of $f(x)=x$ is shown. Sketch the graph of each function, along with f, on the same set of coordinate axes. Use a graphing calculator to check your results. What can you conclude?

a. $g(x)=x+4$
b. $g(x)=x+2$
c. $g(x)=x-2$
d. $g(x)=x-4$

2 EXPLORATION: Comparing Graphs of Functions

Work with a partner. Sketch the graph of each function, along with $f(x)=x$, on the same set of coordinate axes. Use a graphing calculator to check your results. What can you conclude?
a. $h(x)=\frac{1}{2} x$
b. $\quad h(x)=2 x$
c. $h(x)=-\frac{1}{2} x$
d. $h(x)=-2 x$

\qquad

3.6 Transformations of Graphs of Linear Functions (continued)

3 EXPLORATION: Matching Functions with Their Graphs
Work with a partner. Match each function with its graph. Use a graphing calculator to check your results. Then use the results of Explorations 1 and 2 to compare the graph of k to the graph of $f(x)=x$.
a. $k(x)=2 x-4$
b. $\quad k(x)=-2 x+2$
c. $k(x)=\frac{1}{2} x+4$
d. $k(x)=-\frac{1}{2} x-2$
A.

B.

C.

D.

Communicate Your Answer

4. How does the graph of the linear function $f(x)=x$ compare to the graphs of $g(x)=f(x)+c$ and $h(x)=f(c x) ?$
\qquad

3.6

In your own words, write the meaning of each vocabulary term.
family of functions
parent function
transformation
translation
reflection
horizontal shrink
horizontal stretch
vertical stretch
vertical shrink

Notes:

3.6 Notetaking with Vocabulary (continued)

Core Concepts

A translation is a transformation that shifts a graph horizontally or vertically but does not change the size, shape, or orientation of the graph.

Horizontal Translations

The graph of $y=f(x-h)$ is a horizontal translation of the graph of $y=f(x)$, where $h \neq 0$.

Subtracting h from the inputs before evaluating the function shifts the graph left when $h<0$ and right when $h>0$.

Vertical Translations

The graph of $y=f(x)+k$ is a vertical translation of the graph of $y=f(x)$, where $k \neq 0$.

Adding k to the outputs shifts the graph down when $k<0$ and up when $k>0$.

Notes:

A reflection is a transformation that flips a graph over a line called the line of reflection.

Reflections in the x-axis

The graph of $y=-f(x)$ is a reflection in the x-axis of the graph of $y=f(x)$.

Multiplying the outputs by -1 changes their signs.

Reflections in the \boldsymbol{y}-axis

The graph of $y=f(-x)$ is a reflection in the y-axis of the graph of $y=f(x)$.

Multiplying the inputs by -1 changes their signs.

Notes:

\qquad
\qquad

3.6 Notetaking with Vocabulary (continued)

Horizontal Stretches and Shrinks

The graph of $y=f(a x)$ is a horizontal stretch or shrink by a factor of $\frac{1}{a}$ of the graph of $y=f(x)$, where $a>0$ and $a \neq 1$.

Vertical Stretches and Shrinks

The graph of $y=a \bullet f(x)$ is a vertical stretch or shrink by a factor of a of the graph of $y=f(x)$, where $a>0$ and $a \neq 1$.

Notes:

Transformations of Graphs

The graph of $y=a \bullet f(x-h)+k$ or the graph of $y=f(a x-h)+k$ can be obtained from the graph of $y=f(x)$ by performing these steps.

Step 1 Translate the graph of $y=f(x)$ horizontally h units.
Step 2 Use a to stretch or shrink the resulting graph from Step 1.
Step 3 Reflect the resulting graph from Step 2 when $a<0$.
Step 4 Translate the resulting graph from Step 3 vertically k units.

Notes:

\qquad

3.6 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-6, use the graphs of f and g to describe the transformation from the graph of \boldsymbol{f} to the graph of \boldsymbol{g}.
1.

2.
3.

5.
6.
7. Graph $f(x)=x$ and $g(x)=3 x-2$.

Describe the transformations from the graph of f to the graph of g.

4.

$$
\text { graph of } f \text { to the graph of } g \text {. }
$$

