3.5

a.

Graphing Linear Equations in Slope-Intercept Form For use with Exploration 3.5

Essential Question How can you describe the graph of the equation y = mx + b?

EXPLORATION: Finding Slopes and *y*-Intercepts

Work with a partner. Find the slope and *y*-intercept of each line.

EXPLORATION: Writing a Conjecture

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Graph each equation. Then complete the table. Use the completed table to write a conjecture about the relationship between the graph of y = mx + b and the values of *m* and *b*.

Equation	Description of graph	Slope of graph	y-Intercept		
a. $y = -\frac{2}{3}x + 3$	Line	$-\frac{2}{3}$	3		
b. $y = 2x - 2$					
c. $y = -x + 1$					
d. $y = x - 4$					

3.5 Graphing Linear Equation in Slope-Intercept Form (continued)

Communicate Your Answer

- **3.** How can you describe the graph of the equation y = mx + b?
 - **a.** How does the value of *m* affect the graph of the equation?
 - **b.** How does the value of *b* affect the graph of the equation?
 - **c.** Check your answers to parts (a) and (b) by choosing one equation from Exploration 2 and (1) varying only *m* and (2) varying only *b*.

In your own words, write the meaning of each vocabulary term.

slope

rise

run

slope-intercept form

constant function

Core Concepts

Slope

The **slope** *m* of a nonvertical line passing through two points (x_1, y_1) and (x_2, y_2) is the ratio of the **rise** (change in *y*) to the **run** (change in *x*).

slope = $m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$

When the line rises from left to right, the slope is positive. When the line falls from left to right, the slope is negative.

Notes:

3.5 Notetaking with Vocabulary (continued)

Slope

Negative slope

Slope of 0

Undefined slope

The line rises from left to right.

Notes:

The line falls from left to right.

The line is horizontal.

Slope-Intercept Form

Notes:

3.5 Notetaking with Vocabulary (continued)

Extra Practice

In Exercise 1–3, describe the slope of the line. Then find the slope.

In Exercise 4 and 5, the points represented by the table lie on a line. Find the slope of the line.

4.	x	1	2	3	4	5.	x	-3	-1	1	3
	y	-2	-2	-2	-2		y	11	3	-5	-13

In Exercise 6–8, find the slope and the *y*-intercept of the graph of the linear equation.

- **6.** 6x + 4y = 24 **7.** $y = -\frac{3}{4}x + 2$ **8.** y = 5x
- **9.** A linear function *f* models a relationship in which the dependent variable decreases 6 units for every 3 units the independent variable decreases. The value of the function at 0 is 4. Graph the function. Identify the slope, *y*-intercept, and *x*-intercept of the graph.

