# **3.4** Graphing Linear Equations in Standard Form For use with Exploration 3.4

**Essential Question** How can you describe the graph of the equation Ax + By = C?



### **EXPLORATION:** Using a Table to Plot Points

### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. You sold a total of \$16 worth of tickets to a fundraiser. You lost track of how many of each type of ticket you sold. Adult tickets are \$4 each. Child tickets are \$2 each.



- **a.** Let *x* represent the number of adult tickets. Let *y* represent the number of child tickets. Use the verbal model to write an equation that relates *x* and *y*.
- **b.** Complete the table to show the different combinations of tickets you might have sold.

| x |  |  |  |
|---|--|--|--|
| y |  |  |  |

c. Plot the points from the table. Describe the pattern formed by the points.



**d.** If you remember how many adult tickets you sold, can you determine how many child tickets you sold? Explain your reasoning.

## 3.4 Graphing Linear Equations in Standard Form (continued)

### **EXPLORATION:** Rewriting and Graphing an Equation

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. You sold a total of \$48 worth of cheese. You forgot how many pounds of each type of cheese you sold. Swiss cheese costs \$8 per pound. Cheddar cheese costs \$6 per pound.



- **a.** Let *x* represent the number of pounds of Swiss cheese. Let *y* represent the number of pounds of cheddar cheese. Use the verbal model to write an equation that relates *x* and *y*.
- **b.** Solve the equation for *y*. Then use a graphing calculator to graph the equation. Given the real-life context of the problem, find the domain and range of the function.
- **c.** The *x*-intercept of a graph is the *x*-coordinate of a point where the graph crosses the *x*-axis. The *y*-intercept of a graph is the *y*-coordinate of a point where the graph crosses the *y*-axis. Use the graph to determine the *x* and *y*-intercepts.
- **d.** How could you use the equation you found in part (a) to determine the *x* and *y*-intercepts? Explain your reasoning.
- e. Explain the meaning of the intercepts in the context of the problem.

## Communicate Your Answer

- **3.** How can you describe the graph of the equation Ax + By = C?
- 4. Write a real-life problem that is similar to those shown in Explorations 1 and 2.

# **3.4** Notetaking with Vocabulary For use after Lesson 3.4

In your own words, write the meaning of each vocabulary term.

standard form

x-intercept

y-intercept

# Core Concepts

### **Horizontal and Vertical Lines**



The graph of y = b is a horizontal line. The line passes through the point (0, b).



The graph of x = a is a vertical line. The line passes through the point (a, 0).

### Notes:

## 3.4 Notetaking with Vocabulary (continued)

### **Using Intercepts to Graph Equations**

The *x*-intercept of a graph is the *x*-coordinate of a point where the graph crosses the *x*-axis. It occurs when y = 0.

The *y*-intercept of a graph is the *y*-coordinate of a point where the graph crosses the *y*-axis. It occurs when x = 0.



To graph the linear equation Ax + By = C, find the intercepts and draw the line that passes through the two intercepts.

- To find the x-intercept, let y = 0 and solve for x.
- To find the *y*-intercept, let x = 0 and solve for *y*.

Notes:

# **Extra Practice**

#### In Exercises 1 and 2, graph the linear equation.

**1.** 
$$y = -3$$







## 3.4 Notetaking with Vocabulary (continued)

In Exercises 3–5, find the x- and y-intercepts of the graph of the linear equation.

**3.** 3x + 4y = 12 **4.** -x - 4y = 16 **5.** 5x - 2y = -30

In Exercises 6 and 7, use intercepts to graph the linear equation. Label the points corresponding to the intercepts.

**6.** 
$$-8x + 12y = 24$$
 **7.**  $2x + y = 4$ 





- 8. The school band is selling sweatshirts and baseball caps to raise \$9000 to attend a band competition. Sweatshirts cost \$25 each and baseball caps cost \$10 each. The equation 25x + 10y = 9000 models this situation, where x is the number of sweatshirts sold and y is the number of baseball caps sold.
  - **a.** Find and interpret the intercepts.
  - **b.** If 258 sweatshirts are sold, how many baseball caps are sold?
  - c. Graph the equation. Find two more possible solutions in the context of the problem.

