3.3 Function Notation
For use with Exploration 3.3

Essential Question: How can you use function notation to represent a function?

1 EXPLORATION: Matching Functions with Their Graphs

Work with a partner. Match each function with its graph.

a. \(f(x) = 2x - 3 \)
b. \(g(x) = -x + 2 \)

c. \(h(x) = x^2 - 1 \)
d. \(j(x) = 2x^2 - 3 \)

A.
B.
C.
D.
3.3 Function Notation (continued)

EXPLORATION: Evaluating a Function

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Consider the function

\[f(x) = -x + 3. \]

Locate the points \((x, f(x))\) on the graph.

Explain how you found each point.

a. \((-1, f(-1))\)

b. \((0, f(0))\)

c. \((1, f(1))\)

d. \((2, f(2))\)

Communicate Your Answer

3. How can you use function notation to represent a function? How are standard notation and function notation similar? How are they different?

<table>
<thead>
<tr>
<th>Standard Notation</th>
<th>Function Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 2x + 5)</td>
<td>(f(x) = 2x + 5)</td>
</tr>
</tbody>
</table>
In your own words, write the meaning of each vocabulary term.

function notation

Notes:
3.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–6, evaluate the function when \(x = -4, 0, \) and 2.

1. \(f(x) = -x + 4 \)
2. \(g(x) = 5x \)
3. \(h(x) = 7 - 2x \)

4. \(s(x) = 12 - 0.25x \)
5. \(t(x) = 6 + 3x - 2 \)
6. \(u(x) = -2 - 2x + 7 \)

7. Let \(n(t) \) be the number of DVDs you have in your collection after \(t \) trips to the video store. Explain the meaning of each statement.
 a. \(n(0) = 8 \)
 b. \(n(3) = 14 \)
 c. \(n(5) > n(3) \)
 d. \(n(7) - n(2) = 10 \)

In Exercises 8–11, find the value of \(x \) so that the function has the given value.

8. \(b(x) = -3x + 1; b(x) = -20 \)
9. \(r(x) = 4x - 3; r(x) = 33 \)

10. \(m(x) = -\frac{3}{5}x - 4; m(x) = 2 \)
11. \(w(x) = \frac{5}{6}x - 3; w(x) = -18 \)
3.3 Notetaking with Vocabulary (continued)

In Exercises 12 and 13, graph the linear function.

12. \(s(x) = \frac{1}{2}x - 2 \)

13. \(t(x) = 1 - 2x \)

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. The function \(B(m) = 50m + 150 \) represents the balance (in dollars) in your savings account after \(m \) months. The table shows the balance in your friend's savings account. Who has the better savings plan? Explain.

<table>
<thead>
<tr>
<th>Month</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$330</td>
</tr>
<tr>
<td>4</td>
<td>$410</td>
</tr>
<tr>
<td>6</td>
<td>$490</td>
</tr>
</tbody>
</table>