2.3

Solving Inequalities Using Multiplication or Division For use with Exploration 2.3

Essential Question How can you use division to solve an inequality?

Work with a partner.

a. Complete the table. Decide which graph represents the solution of the inequality 6 < 3x. Write the solution of the inequality.

x	-1	0	1	2	3	4	5
3 <i>x</i>	-3						
6 [?] 3 <i>x</i>	No						

b. Use a table to solve each inequality. Then write a rule that describes how to use division to solve the inequalities.

i.	2x	<	4

ii.	3	>	3x
	5	_	$\mathcal{I}_{\mathcal{N}}$

iii. 2x < 8

iv.	6	>	3x
	v	_	$\mathcal{I}_{\mathcal{N}}$

2.3 Solving Inequalities Using Multiplication or Division (continued)

EXPLORATION: Writing a Rule

Work with a partner.

a. Complete the table. Decide which graph represents the solution of the inequality 6 < -3x. Write the solution of the inequality.

b. Use a table to solve each inequality. Then write a rule that describes how to use division to solve the inequalities.

i.
$$-2x < 4$$

Date

iii.
$$-2x < 8$$

iv. $6 \ge -3x$

ii. $3 \ge -3x$

Communicate Your Answer

- **3.** How can you use division to solve an inequality?
- **4.** Use the rules you wrote in Explorations 1(b) and 2(b) to solve each inequality.

a. 7x < -21 **b.** $12 \le 4x$ **c.** 10 < -5x **d.** $-3x \le 0$

Notetaking with Vocabulary

For use after Lesson 2.3

Core Concepts

2.3

Multiplication and Division Properties of Inequality (c > 0)

Words Multiplying or dividing each side of an inequality by the same *positive* number produces an equivalent inequality.

-6 < 86 > -8Numbers $2 \cdot (-6) < 2 \cdot 8 \\ -12 < 16 \qquad \qquad \frac{6}{2} > \frac{-8}{2}$ 3 > -4

Algebra	If $a > b$ and $c > 0$, then $ac > bc$.	If $a > b$ and $c > 0$, then $\frac{a}{c} > \frac{b}{c}$.
	If $a < b$ and $c > 0$, then $ac < bc$.	If $a < b$ and $c > 0$, then $\frac{a}{c} < \frac{b}{c}$.

These properties are also true for \leq and \geq .

Notes:

Multiplication and Division Properties of Inequality (c < 0)

Words When multiplying or dividing each side of an inequality by the same *negative* number, the direction of the inequality symbol must be reversed to produce an equivalent inequality.

Numbers	-6 < 8	6 > -8		
	$-2 \bullet (-6) > -2 \bullet 8$ 12 > -16	$\frac{6}{-2} < \frac{-8}{-2} \\ -3 < 4$		
Algebra	If $a > b$ and $c < 0$, then a	c < bc.	If $a > b$ and $c < 0$, t	then $\frac{a}{c} < \frac{b}{c}$.
	If $a < b$ and $c < 0$, then a	c > bc.	If $a < b$ and $c < 0$, t	then $\frac{a}{c} > \frac{b}{c}$.
These pro	perties are also true for $<$ an	d >		

These properties are also true for \leq and \geq .

Notes:

Name

2.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1–8, solve the inequality. Graph the solution.

1. 6x < -30

2. 48 ≤ 16*f*

3. $-\frac{6}{7} \le \frac{3}{7}f$

4. $-4m \ge -16$

9. There are at most 36 red and blue marbles in a bag. The number of red marbles is twice the number of blue marbles. Write and solve an inequality that represents the greatest number of red marbles *r* in the bag.