\qquad
2.3

Solving Inequalities Using Multiplication or Division

 For use with Exploration 2.3Essential Question How can you use division to solve an inequality?

1 EXPLORATION: Writing a Rule

Work with a partner.
a. Complete the table. Decide which graph represents the solution of the inequality $6<3 x$. Write the solution of the inequality.

\boldsymbol{x}	-1	0	1	2	3	4	5
$\mathbf{3 x}$	-3						
$\mathbf{6} \boldsymbol{\imath} \mathbf{3 x}$	No						

b. Use a table to solve each inequality. Then write a rule that describes how to use division to solve the inequalities.
i. $2 x<4$
ii. $3 \geq 3 x$

iii. $2 x<8$

iv. $6 \geq 3 x$

\qquad

2.3 Solving Inequalities Using Multiplication or Division (continued)

2 EXPLORATION: Writing a Rule

Work with a partner.

a. Complete the table. Decide which graph represents the solution of the inequality $6<-3 x$. Write the solution of the inequality.

\boldsymbol{x}	-5	-4	-3	-2	-1	0	1
$-3 \boldsymbol{x}$							
$\mathbf{6} \stackrel{?}{<}-\mathbf{3 x}$							

b. Use a table to solve each inequality. Then write a rule that describes how to use division to solve the inequalities.
i. $-2 x<4$
ii. $3 \geq-3 x$

iii. $-2 x<8$

iv. $6 \geq-3 x$

Communicate Your Answer

3. How can you use division to solve an inequality?
4. Use the rules you wrote in Explorations $1(\mathrm{~b})$ and 2(b) to solve each inequality.
a. $7 x<-21$
b. $12 \leq 4 x$
c. $10<-5 x$
d. $-3 x \leq 0$
\qquad
\qquad
2.3 $\quad \begin{aligned} & \text { Notetaking with Vocabulary } \\ & \text { For use after Lesson } 23\end{aligned}$

Core Concepts

Multiplication and Division Properties of Inequality ($c>0$)

Words Multiplying or dividing each side of an inequality by the same positive number produces an equivalent inequality.
Numbers

$$
\begin{aligned}
-6 & <8 & & 6>-8 \\
-6) & <\mathbf{2} \cdot 8 & & \frac{6}{2}>\frac{-8}{\mathbf{2}} \\
-12 & <16 & & 3>-4
\end{aligned}
$$

Algebra If $a>b$ and $c>0$, then $a c>b c . \quad$ If $a>b$ and $c>0$, then $\frac{a}{c}>\frac{b}{c}$. If $a<b$ and $c>0$, then $a c<b c . \quad$ If $a<b$ and $c>0$, then $\frac{a}{c}<\frac{b}{c}$.
These properties are also true for \leq and \geq.
Notes:

Multiplication and Division Properties of Inequality ($c<0$)

Words When multiplying or dividing each side of an inequality by the same negative number, the direction of the inequality symbol must be reversed to produce an equivalent inequality.

Numbers

$$
\begin{array}{rlrl}
-6 & <8 & 6 & >-8 \\
\mathbf{- 2} \cdot(-6) & >-\mathbf{2} \cdot 8 & \frac{6}{-2} & <\frac{-8}{-\mathbf{2}} \\
12 & >-16 & -3 & <4
\end{array}
$$

Algebra If $a>b$ and $c<0$, then $a c<b c . \quad$ If $a>b$ and $c<0$, then $\frac{a}{c}<\frac{b}{c}$.

$$
\text { If } a<b \text { and } c<0 \text {, then } a c>b c . \quad \text { If } a<b \text { and } c<0 \text {, then } \frac{a}{c}>\frac{b}{c} \text {. }
$$

These properties are also true for \leq and \geq.
Notes:
\qquad

2.3 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-8, solve the inequality. Graph the solution.

1. $6 x<-30$

2. $48 \leq 16 f$

3. $-\frac{6}{7} \leq \frac{3}{7} f$

4. $-4 m \geq-16$

5. $\frac{x}{-6}>\frac{1}{3}$

\qquad
\qquad
2.3 Notetaking with Vocabulary (continued)
6. $1 \leq-\frac{1}{4} y$

7. $-\frac{2}{3}<-4 x$

8. $-\frac{4}{5} x \geq-2$

9. There are at most 36 red and blue marbles in a bag. The number of red marbles is twice the number of blue marbles. Write and solve an inequality that represents the greatest number of red marbles r in the bag.
