\qquad

Solving Inequalities Using Addition or Subtraction For use with Exploration 2.2

Essential Question How can you use addition or subtraction to solve an inequality?

1 EXPLORATION: Quarterback Passing Efficiency

Work with a partner. The National Collegiate Athletic Association (NCAA) uses the following formula to rank the passing efficiencies P of quarterbacks.
$P=\frac{8.4 Y+100 C+330 T-200 N}{A}$
$Y=$ total length of all completed passes (in Yards) $\quad C=$ Completed passes
$T=$ passes resulting in a Touchdown $\quad N=$ iNtercepted passes
$A=$ Attempted passes $\quad M=$ incoMplete passes

Determine whether each inequality must be true. Explain your reasoning.
a. $T<C$
b. $C+N \leq A$
c. $N<A$
d. $A-C \geq M$
\qquad
\qquad
2.2 Solving Inequalities Using Addition or Subtraction (continued)

2 EXPLORATION: Finding Solutions of Inequalities
Work with a partner. Use the passing efficiency formula to create a passing record that makes each inequality true. Record your results in the table. Then describe the values of P that make each inequality true.
a.

Attempts	Completions	Yards	Touchdowns	Interceptions

a. $P<0$
b. $P+100 \geq 250$
c. $P-250>-80$

Communicate Your Answer

3. How can you use addition or subtraction to solve an inequality?
4. Solve each inequality.
a. $x+3<4$
b. $x-3 \geq 5$
c. $4>x-2$
d. $-2 \leq x+1$
\qquad
2.2

Notetaking with Vocabulary For use after Lesson 2.2

In your own words, write the meaning of each vocabulary term. equivalent inequalities

Notes:

Core Concepts

Addition Property of Inequality

Words Adding the same number to each side of an inequality produces an equivalent inequality.

Numbers | -3 | <2 | -3 | ≥-10 |
| ---: | :--- | ---: | :--- |
| $\mathbf{+ 4}$ | | | |
| 1 | $<\frac{\mathbf{+ 4}}{6}$ | $\underline{+3}$ | $\underline{+3}$ |
| 0 | ≥-7 | | |

Algebra If $a>b$, then $a+c>b+c . \quad$ If $a \geq b$, then $a+c \geq b+c$. If $a<b$, then $a+c<b+c . \quad$ If $a \leq b$, then $a+c \leq b+c$.

Notes:
\qquad
\qquad

2.2 Notetaking with Vocabulary (continued)

Subtraction Property of Inequality

Words Subtracting the same number from each side of an inequality produces an equivalent inequality.

Numbers | $-3 \leq 1$ | 7 | >-20 |
| ---: | :--- | ---: |
| $-\mathbf{- 5}$ | $\frac{-\mathbf{- 5}}{-8}$ | $\frac{-7}{-4}$ |
| -8 | >-27 | |

Algebra If $a>b$, then $a-c>b-c . \quad$ If $a \geq b$, then $a-c \geq b-c$.
If $a<b$, then $a-c<b-c . \quad$ If $a \leq b$, then $a-c \leq b-c$.

Notes:

Extra Practice

In Exercises 1-6, solve the inequality. Graph the solution.

1. $x-3<-4$

2. $-3>-3+h$

\qquad

2.2 Notetaking with Vocabulary (continued)

3. $s-(-1) \geq 2$

4. $6-9+u<-2$

5. $12 \leq 4 c-3 c+10$

6. $15-7 p+8 p>15-2$

7. You have $\$ 15$ to spend on groceries. You have $\$ 12.25$ worth of groceries already in your cart.
a. Write an inequality that represents how much more money m you can spend on groceries.
b. Solve the inequality.
