2.2

Solving Inequalities Using Addition or Subtraction For use with Exploration 2.2

Essential Question How can you use addition or subtraction to solve an inequality?

Work with a partner. The National Collegiate Athletic Association (NCAA) uses the following formula to rank the passing efficiencies *P* of quarterbacks.

$$P = \frac{8.4Y + 100C + 330T - 200N}{A}$$

- Y =total length of all completed passes (in Yards) C =Completed passes
- T = passes resulting in a Touchdown
- A = Attempted passes

N = iNtercepted passesM = incoMplete passes

Determine whether each inequality must be true. Explain your reasoning.

a. *T* < *C*

b.
$$C + N \leq A$$

- **c.** N < A
- $d. \quad A C \ge M$

2.2 Solving Inequalities Using Addition or Subtraction (continued)

2

EXPLORATION: Finding Solutions of Inequalities

Work with a partner. Use the passing efficiency formula to create a passing record that makes each inequality true. Record your results in the table. Then describe the values of *P* that make each inequality true.

	Attempts	Completions	Yards	Touchdowns	Interceptions
a.					
b.					
c.					

a. *P* < 0

- **b.** $P + 100 \ge 250$
- **c.** P 250 > -80

Communicate Your Answer

- 3. How can you use addition or subtraction to solve an inequality?
- **4.** Solve each inequality.

a. x + 3 < 4 **b.** $x - 3 \ge 5$ **c.** 4 > x - 2**d.** $-2 \le x + 1$

In your own words, write the meaning of each vocabulary term.

equivalent inequalities

Notes:

Core Concepts

Addition Property of Inequality

Words Adding the same number to each side of an inequality produces an equivalent inequality.

Numbers	-3 < 2	$-3 \geq -10$	
	± 4 ± 4	± 3 ± 3	
	1 < 6	$0 \geq -7$	
Algebra	If $a > b$, then $a + c$	> b + c.	If $a \ge b$, then $a + c \ge b + c$.
	If $a < b$, then $a + c$	< <i>b</i> + <i>c</i> .	If $a \le b$, then $a + c \le b + c$.

Notes:

2.2 Notetaking with Vocabulary (continued)

Subtraction Property of Inequality

Words Subtracting the same number from each side of an inequality produces an equivalent inequality.

Numbers $-3 \le 1$ 7 > -20 -5 -5 $-8 \le -4$ 7 > -20 -7 0 > -27Algebra If a > b, then a - c > b - c. If $a \ge b$, then $a - c \ge b - c$. If $a \le b$, then $a - c \le b - c$. If $a \le b$, then $a - c \le b - c$.

Notes:

Extra Practice

In Exercises 1–6, solve the inequality. Graph the solution.

1.
$$x - 3 < -4$$

2. -3 > -3 + h

- 7. You have \$15 to spend on groceries. You have \$12.25 worth of groceries already in your cart.
 - **a.** Write an inequality that represents how much more money *m* you can spend on groceries.
 - **b.** Solve the inequality.