8.1 Start Thinking

Use a graphing calculator to graph the functions in the table. Then complete the table.

Quadratic equation	Shape	Relationship to $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{2}}$
$y=2 x^{2}$		
$y=\frac{1}{2} x^{2}$		
$y=-x^{2}$		
$y=(2 x)^{2}$		

How does the value of the coefficient of x^{2} change the graph of the quadratic equation? Which graph looks the most different from the others? Explain.

8.1

Graph the equation.

1. $y=-x-1$
2. $y=\frac{3}{2} x+2$
3. $y=-x-2$
4. $y=3 x+3$
5. $y=x$
6. $y=\frac{3}{4} x-3$

8.1 Cumulative Review Warm Up

Use the Distributive Property to find the product.

1. $(x-2)(x-2)$
2. $(z+6)(z-2)$
3. $(g+8)(g+1)$
4. $(y-7)(y-3)$
5. $(4 m)(m-10)$
6. $(x-4)(x-1)$
\qquad

8.1 Practice A

In Exercises 1-6, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.

1. $g(x)=4 x^{2}$
2. $h(x)=1.5 x^{2}$
3. $j(x)=\frac{1}{3} x^{2}$
4. $g(x)=-3 x^{2}$
5. $k(x)=-\frac{5}{2} x^{2}$
6. $n(x)=-0.5 x^{2}$

In Exercises 7-9, use a graphing calculator to graph the function. Compare the graph to the graph of $y=-5 x^{2}$.
7. $y=5 x^{2}$
8. $y=-0.5 x^{2}$
9. $y=-0.05 x^{2}$
10. The arch support of a bridge can be modeled by $y=-0.00125 x^{2}$, where x and y are measured in feet.
a. The width of the arch is 800 feet. Describe the domain of the function.

Explain.
b. Use a graphing calculator to graph the function, using the domain in part (a).

Find the height of the arch.
11. Is the y-intercept of the graph of $y=a x^{2}$ always 0 ? Explain.

In Exercises 12-15, determine whether the statement is always, sometimes, or never true. Explain your reasoning.
12. The graph of $f(x)=a x^{2}$ is narrower than the graph of $g(x)=d x^{2}$ when $d=-a$.
13. The graph of $f(x)=a x^{2}$ opens in the same direction as the graph of $g(x)=d x^{2}$ when $d=|a|$.
14. The graph of $f(x)=a x^{2}$ opens in the same direction as the graph of $g(x)=d x^{2}$ when $g(x)=f(-x)$.
15. The graph of $f(x)=a x^{2}$ opens in the same direction as the graph of $g(x)=d x^{2}$ when $g(x)=-f(x)$.
\qquad
\qquad
8.1 Practice B

In Exercises 1-6, graph the function. Compare the graph to the graph of $f(x)=x^{2}$.

1. $g(x)=7 x^{2}$
2. $h(x)=0.25 x^{2}$
3. $j(x)=\frac{7}{2} x^{2}$
4. $g(x)=-\frac{5}{3} x^{2}$
5. $k(x)=-\frac{3}{4} x^{2}$
6. $n(x)=-0.4 x^{2}$
7. Describe and correct the error in graphing and comparing $y=x^{2}$ and $y=-2 x^{2}$.

8. The arch support of a bridge can be modeled by $y=-\frac{1}{300} x^{2}$, where x and y are measured in feet.
a. The width of the arch is 900 feet. Describe the domain of the function.

Explain.
b. Use a graphing calculator to graph the function, using the domain in part (a). Find the height of the arch.
9. A parabola opens down and passes through the points $(-3,4)$ and $(1,-2)$. How do you know that $(-3,4)$ could be the vertex?
10. Given the parabola $f(x)=a x^{2}$.
a. Find the value of a when the graph passes through $(3,-1)$ and $a<0$.
b. Find the value of a when the graph passes through $(3,-1)$ and $a>0$.

Explain.
\qquad

8.1 Enrichment and Extension

Working with Quadratic Functions

In Exercises 1-14, use your knowledge of quadratic functions.

1. Write the equation of any quadratic function (except $y=x^{2}$).
2. Graph the function.
3. Determine the maximum (or minimum) point of the equation.
4. Determine the domain and range for the function.
5. What is the solution to the equation $x^{2}=25$?
6. Graph the function $y=x^{2}-25$.
7. How does the graph of the function in Exercise 6 help in determining the solution to the equation?
8. What is the solution to the equation $x^{2}=16$?
9. Graph the function $y=x^{2}-16$.
10. How does the graph of the function in Exercise 9 help in determining the solution to the equation?
11. What is the solution to the equation $x^{2}=-4$?
12. Graph the function $y=x^{2}+4$.
13. Why is the graph of this function different from the graphs of the functions in Exercises 6 and 9?
14. Make a conjecture of the possible reasons for your answer to Exercise 13.
\qquad
\qquad

8.1 Puzzle Time

Where Does A Squirrel Keep Its Winter Clothes?

Write the letter of each answer in the box containing the exercise number.

Compare the graph of the function to the graph of

 $f(x)=x^{2}$.1. $b(x)=-x^{2}$
2. $p(x)=5 x^{2}$
3. $q(x)=\frac{1}{3} x^{2}$
4. $t(x)=-4 x^{2}$
5. $c(x)=-0.2 x^{2}$
6. $h(x)=6.4 x^{2}$
7. $r(x)=0.12 x^{2}$
8. $d(x)=-\frac{8}{5} x^{2}$
9. $s(x)=\frac{2}{3} x^{2}$
10. $k(x)=\frac{1}{9} x^{2}$
11. The graph of a parabolic bowl can be represented by $g(x)=\frac{2}{5} x^{2}$. Compare the graph to the graph of $f(x)=x^{2}$.
12. The decorated archway at the entrance to a craft fair can be represented by $h(x)=-7 x^{2}$. Compare the graph to the graph of $f(x)=x^{2}$.

Answers

E. vertical shrink by a factor of $\frac{1}{3}$
T. vertical shrink by a factor of $\frac{1}{9}$
K. reflection in the x-axis; vertical shrink by a factor of 0.2
N. reflection in the x-axis
A. vertical shrink by a factor of $\frac{2}{5}$
T. vertical shrink by a factor of 0.12
R. reflection in the x-axis; vertical stretch by a factor of 4
N. vertical stretch by a factor of 5
R. reflection in the x-axis; vertical stretch by a factor of $\frac{8}{5}$
I. vertical stretch by a factor of 6.4
E. vertical shrink by a factor of $\frac{2}{3}$
U. reflection in the x-axis; vertical stretch by a factor of 7

6	2		11		7	4	9	3		10	8	12	1	5

