\qquad
7.1 Extra Practice

In Exercises 1-3, find the sum of the measures of the interior angles of the indicated convex polygon.

1. octagon
2. 15-gon
3. 24-gon

In Exercises 4-6, the sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.
4. 900°
5. 1620°
6. 2880°

In Exercises 7-10, find the value of \boldsymbol{x}.

7.

8.

9.

10.

11. A pentagon has three interior angles that are congruent and two other interior angles that are supplementary to each other. Find the measure of each of the three congruent angles.
12. You are designing an amusement park ride with cars that spin in a circle around a center axis. The cars are located at the vertices of a regular polygon. The sum of the measures of the interior angles of the polygon is 6120°. If each car can hold four people, what is the maximum number of people who can be on the ride at one time?
\qquad
7.1

Review \& Refresh

In Exercises 1 and 2, find the value of \boldsymbol{x}.
1.

2.

3. Which is greater, $m \angle 1$ or $m \angle 2$? Explain your reasoning.

4. Describe the possible lengths of the third side of a triangle with side lengths of 14 feet and 6 feet.
5. Write an equation of the line that passes through $(8,-5)$ and is perpendicular to $y=-4 x+3$.
6. Determine whether the polygon has line symmetry. If so, draw the line(s) of symmetry and describe any
 reflections that map the figure onto itself.
7. $\overline{M N}$ is a midsegment of $\triangle P Q R$. Find the value of x.

8. The sum of the measures of the interior angles of a convex polygon is 2340°. Classify the polygon by the number of sides.
9. Factor $x^{2}-5 x-66$.
10. Find the measure of the exterior angle.

7.1 Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.

\qquad
7.2 Extra Practice

In Exercises 1-3, find the value of each variable in the parallelogram.
1.

2.

3.

In Exercises 4-11, find the indicated measure in \square MNOP. Explain your reasoning.
4. $P O$
5. $O Q$
6. $N O$

7. $P Q$
8. $m \angle P M N$
10. $m \angle O P M$
12. Write a two-column proof.

Given: $P Q R S$ is a parallelogram.
Prove: $\triangle P Q T \cong \triangle R S T$
9. $m \angle N O P$
11. $m \angle N M O$

13. Three vertices of $\square W X Y Z$ are $W(-3,4), Y(5,3)$, and $Z(3,6)$. Find the coordinates of vertex X. Then find the coordinates of the intersection of the diagonals of $\square W X Y Z$.
\qquad

7.2 Review \& Refresh

1. List the sides of $\triangle A B C$ in order from shortest to longest.

In Exercises 2-4, find the indicated measure in $\square Q R S T$. Explain your reasoning.
2. $Q R$
3. $\angle S$
4. $\angle T$

5. Find the value of x.

6. The coordinates of a point and its image after a reflection are shown. What is the line of reflection?

$$
(-2,-9) \rightarrow(9,2)
$$

7. Decide whether there is enough information to prove that $\ell \| m$. If so, state the theorem you can use.

8. The hiking trail from A to B is shorter than the trail from C to D. The trail from A to D is the same length as the trail from C to B. What can you conclude about $\angle A D B$ and $\angle C B D$? Explain your reasoning.

7.2 Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.
1 I do not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

	Rating				
7.2 Properties of Parallelograms	Date				
Learning Target: Prove and use properties of parallelograms.	1	2	3	4	
I can prove properties of parallelograms.	1	2	3	4	
I can use properties of parallelograms.	1	2	3	4	
I can solve problems involving parallelograms in the coordinate plane.	1	2	3	4	

\qquad
7.3 Extra Practice

In Exercises 1-3, state which theorem you can use to show that the quadrilateral is a parallelogram.
1.

2.

3.

In Exercises 4-6, find the values of \boldsymbol{x} and \boldsymbol{y} that make the quadrilateral a parallelogram.
4.

5.

6.

In Exercises 7 and 8, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.
7. $J(-1,2), K(0,4), L(5,4), M(4,2)$
8. $A(-2,-3), B(1,-4), C(6,0), D(3,1)$
9. In the diagram of the handrail for a staircase, $m \angle C A B=145^{\circ}$ and $\overline{A B} \cong \overline{C D}$.
a. Explain how to show that $A B D C$ is a parallelogram.
b. Describe how to prove that $C D F E$ is a parallelogram.
c. Can you prove that $E F H G$ is a parallelogram? Explain.
d. Find $m \angle A C D, m \angle D C E, m \angle C E F$, and $m \angle E F D$.

\qquad

7.3 Review \& Refresh

1. Solve the equation $4-2 y=5-6 x$ for y. Justify each step.
2. Find the value of x.

3. Find the distance between $X(-1,5)$ and $Y(12,2)$.
4. Three vertices of $\square A B C D$ are $A(-1,-4)$, $B(1,-1)$, and $C(-4,1)$. Find the coordinates of the remaining vertex.
5. Graph $\triangle D E F$ with vertices $D(-1,2)$, $E(1,0)$, and $F(0,-1)$ and its image after a dilation with a scale factor of 2 .
6. State which theorem you can use to show that the quadrilateral is a parallelogram.

7. Place a rectangle with a length of 3ℓ units and a width of ℓ units in the coordinate plane. Find the length of the diagonal.

7.3 Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.
1 I do not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

	Rating				
7.3 Proving That a Quadrilateral Is a Parallelogram	Date				
Learning Target: Prove that a quadrilateral is a parallelogram.	1	2	3	4	
I can identify features of a parallelogram.	1	2	3	4	
I can prove that a quadrilateral is a parallelogram.	1	2	3	4	
I can find missing lengths that make a quadrilateral a parallelogram.	1	2	3	4	
I can show that a quadrilateral in the coordinate plane is a parallelogram.	1	2	3	4	

\qquad

7.4 Extra Practice

1. For any rhombus $M N O P$, decide whether the statement $\overline{M O} \cong \overline{N P}$ is always or sometimes true. Draw a diagram and explain your reasoning.
2. For any rectangle $P Q R S$, decide whether the statement $\angle P Q S \cong \angle R S Q$ is always or sometimes true. Draw a diagram and explain your reasoning.

In Exercises 3-5, the diagonals of rhombus $A B C D$ intersect at E. Given that $m \angle B C A=44^{\circ}, A B=9$, and $A E=7$, find the indicated measure.
3. $B C$
4. $A C$
5. $m \angle A D C$

In Exercises 6-8, the diagonals of rectangle EFGH intersect at I. Given that $m \angle H F G=31^{\circ}$ and $E G=17$, find the indicated measure.
6. $m \angle F H G$
7. $H F$
8. $m \angle E F H$

In Exercises 9-11, the diagonals of square LMNP intersect at K. Given that $M K=\frac{1}{2}$, find the indicated measure.
9. $P K$
10. $m \angle P K N$
11. $m \angle M N K$

In Exercises 12 and 13, decide whether $\square J K L M$ is a rectangle, a rhombus, or a square. Give all names that apply. Explain your reasoning.
12. $J(3,2), K(1,1), L(-1,2), M(1,3)$
13. $J(-2,5), K(0,7), L(3,4), M(1,2)$
\qquad

7.4 Review \& Refresh

In Exercises 1 and 2, use the graphs of f and g to describe the transformation from the graph of \boldsymbol{f} to the graph of \boldsymbol{g}.

1. $f(x)=11 x-3, g(x)=f(x+5)$
2. $f(x)=15-8 x, g(x)=f(3 x)$
3. Rewrite the definition as a biconditional statement.

Definition A midsegment of a triangle is a segment that connects the midpoints of two sides of the triangle.

In Exercises 4 and 5, solve the inequality. Graph the solution, if possible.
4. $|4 m+1|-5 \leq-2$
5. $9(t+1)<3(t+9)$
6. Find the values of x and y in the parallelogram.

7. Find the measure of each interior angle and each exterior angle of a regular 30-gon.
8. Find the perimeter and area of $\triangle X Y Z$ with vertices $X(5,1), Y(-1,1)$, and $Z(3,2)$.
9. Decide whether you can use the given information $\angle D \cong \angle Q, \angle F \cong \angle S$, and $\overline{E F} \cong \overline{R S}$ to prove that $\triangle D E F \cong \triangle Q R S$. Explain your reasoning.
10. Find the length of $\overline{A B}$.

Explain your reasoning.

7.4 Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.
1 I do not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

	Rating				
7.4 Properties of Special Parallelograms	Date				
Learning Target: Explain the properties of special parallelograms.	1	2	3	4	
I can identify special quadrilaterals.	1	2	3	4	
I can explain how special parallelograms are related.	1	2	3	4	
I can find missing measures of special parallelograms.	1	2	3	4	
I can identify special parallelograms in a coordinate plane.	1	2	3	4	

\qquad

7.5 Extra Practice

1. Show that the quadrilateral with vertices $Q(0,3), R(0,6), S(-6,0)$ and $T(-3,0)$ is a trapezoid. Decide whether it is isosceles. Then find the length of its midsegment.

In Exercises 2 and 3, find $m \angle K$ and $m \angle L$.
2.

3.

In Exercises 4 and 5, find CD.
4.

5.

In Exercises 6 and 7, find the value of \boldsymbol{x}.
6.

7.

In Exercises 8 and 9, give the most specific name for the quadrilateral. Explain your reasoning.
8.

9.

\qquad

7.5 Review \& Refresh

1. Decide whether enough information is given to prove that $\triangle R U T$ and $\triangle R U S$ are congruent using the HL Congruence Theorem.

2. Find the distance from $(6,-1)$ to the line $y=x+7$.
3. Classify the quadrilateral.

4. Find $D B$ in $\square A B C D$. Explain your reasoning.

5. State which theorem you can use to show that the quadrilateral is a parallelogram.

6. Graph $\overline{E F}$ with endpoints $E(2,7)$ and $F(1,4)$ and its image after a reflection in the y-axis, followed by a translation 3 units down.
7. Find the perimeter of the outer frame of the bridge.

7.5 Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.
1 I do not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

	Rating				
7.5 Properties of Trapezoids and Kites	Date				
Learning Target: Use properties of trapezoids and kites to find measures.	1	2	3	4	
I can identify trapezoids and kites.	1	2	3	4	
I can use properties of trapezoids and kites to solve problems.	1	2	3	4	
I can find the length of the midsegment of a trapezoid.	1	2	3	4	
I can explain the hierarchy of quadrilaterals.	1	2	3	4	

\qquad

Chapter 7 Chapter Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.
1 I do not understand. 2 I can do it with help. 3 I can do it on my own. 4 I can teach someone else.

	Rating						Date
Chapter 7 Quadrilaterals and Other Polygons							
Learning Target: Understand quadrilaterals and other polygons.			2	3		4	
I can find angles of polygons.			2	3		4	
I can describe properties of parallelograms.			2	3		4	
I can use properties of parallelograms.			2	3		4	
I can identify special quadrilaterals.			2	3		4	
7.1 Angles of Polygons							
Learning Target: Find angle measures of polygons.			2	3		4	
I can find the sum of the interior angle measures of a polygon.			2	3		4	
I can find interior angle measures of polygons.			2	3		4	
I can find exterior angle measures of polygons.			2	3	4	4	
7.2 Properties of Parallelograms							
Learning Target: Prove and use properties of parallelograms.			2	3		4	
I can prove properties of parallelograms.			2	3		4	
I can use properties of parallelograms.			2	3		4	
I can solve problems involving parallelograms in the coordinate plane.			2	3		4	
7.3 Proving That a Quadrilateral Is a Parallelogram							
Learning Target: Prove that a quadrilateral is a parallelogram.			2	3		4	
I can identify features of a parallelogram.			2	3		4	
I can prove that a quadrilateral is a parallelogram.			2	3		4	
I can find missing lengths that make a quadrilateral a parallelogram.			2	3		4	
I can show that a quadrilateral in the coordinate plane is a parallelogram.			2	3		4	

\qquad
Chapter 7

Chapter Self-Assessment (continued)

	Rating						Date
7.4 Properties of Special Parallelograms	1	2	3	4			
Learning Target: Explain the properties of special parallelograms.	1	2	3	4			
I can identify special quadrilaterals.	1	2	3	4			
I can explain how special parallelograms are related.	1	2	3	4			
I can find missing measures of special parallelograms.	1	2	3	4			
I can identify special parallelograms in a coordinate plane.							
7.5 Properties of Trapezoids and Kites	1	2	3	4			
Learning Target: Use properties of trapezoids and kites to find measures.	1	2	3	4			
I can identify trapezoids and kites.	1	2	3	4			
I can use properties of trapezoids and kites to solve problems.	1	2	3	4			
I can find the length of the midsegment of a trapezoid.	1	2	3	4			
I can explain the hierarchy of quadrilaterals.							

\qquad

Chapter 7
 Test Prep

1. What is $C D$?

\bigcirc	Θ	\bigcirc				
	(1)	(1)	(1)	(1)	(1)	
\bigcirc	\bigcirc	\bigcirc				
(0)	(0)	(0)				
(1)	(1)	(1)	(1)	(1)	(1)	
(2)	(2)	(2)	(2)	(2)		
(3)	(3)	(3)	(3)	(3)	(3)	3
(4)	(4)	(4)	(4)	(4)		
(5)	(5)	(5)	(5)	(5)		
(6)	(6)	(6)				
(7)	(7)	(7)	(7)	(7)		
(8)	(8)		(8)			
	(9)	(9)				

3. What is the value of x ?6.25
(B) 10
(c) 22.5

(D) 45
4. Which reason corresponds with the third statement in the proof, " $\angle A B C \cong \angle D B E$?"
(A) Corresponding parts of congruent triangles are congruent.
(B) Definition of congruent angles
© Vertical Angles Congruence Theorem
(D) Definition of angle bisector
5. What is the measure of the exterior angle?

6. What is $m \angle L M N$?
(A) 60°
(B) 90°
(C) 120°
(D) 150°

Given $\overline{A C} \cong \overline{D E}, \angle C \cong \angle E$,	
$\angle A \cong \angle D$	
Prove $\angle A B C \cong \angle D B E$	REASONS
STATEMENTS	1. Given
1. $\overline{A C} \cong \overline{D E}, \angle C \cong \angle E$,	ASA Congruence
$\angle A \cong \angle D$	Theorem
2. $\triangle A B C \cong \triangle D B E$	
3. $\angle A B C \cong \angle D B E$	3.

\qquad

Chapter

Test Prep (continued)

6. Which of the following statements is false?
(A) A square is a rhombus.
(B) A square is a parallelogram.
(C) A rectangle is a parallelogram.
(D) A parallelogram is a rhombus.
7. Three vertices of a parallelogram are $(-3,1),(-1,4)$, and $(5,1)$. Which of the following can be the fourth vertex of the parallelogram? Select all that apply.
(A) $(5,-1)$
(B) $(-1,-2)$
(C) $(3,-2)$
(D) $(3,4)$
(E) $(-9,4)$
© $(7,4)$
8. What is the value of x ?

(D) 8
9. What is $m \angle F$?
(A) 89°
(B) 91°
(C) 96°
(D) 161°

10. Which of the following angle measures are possible exterior angle measures for regular polygons? Select all that apply.
(A) 8°
(B) 12°
(C) 54°
(D) 108°
(E) 120°
(F) 162°
11. What is the $152^{\text {nd }}$ term of the sequence A, G, T, C, $\mathrm{A}, \mathrm{G}, \mathrm{T}, \mathrm{C}, \mathrm{A}, \mathrm{G}, \mathrm{T}, \mathrm{C}, \ldots$?
(A) A
(B) G
(C) T
(D) C
12. $\triangle J K L$ has vertices $J(-4,5), K(2,3)$, and $L(0,1)$. What is the perimeter of its midsegment triangle?
\qquad

Chapter 7
 Test Prep (continued)

13. What is the most specific name for the quadrilateral with vertices $(6,8),(5,6)$, $(9,7)$, and (10,9)?
(A) parallelogram
(B) rhombus
(C) rectangle
(D) square
14. What can you conclude from the diagram?
(A) $E H=G H$
(B) $E H<G H$
(C) $E H>G H$
(D) No conclusion can be made.
15. What is the distance between the point $(3,2)$ and its image after the composition?

Translation: $(x, y) \rightarrow(x+7, y-1)$
Translation: $(x, y) \rightarrow(x-2, y+13)$

14. Which of the following would not provide enough information to prove that the quadrilateral is a parallelogram?
(A) $\overline{D E} \cong \overline{F G}, \overline{E F} \cong \overline{G D}$
(B) $\overline{E F} \cong \overline{G D}, \overline{E F} \| \overline{G D}$
(C) $\overline{D E}\|\overline{F G}, \overline{E F}\| \overline{G D}$
(D) $\overline{E F} \cong \overline{G D}, \overline{D E} \| \overline{F G}$

17. $\triangle A B C$ has vertices $A(-5,8), B(7,8)$, and $C(7,3)$. What is the difference of the perimeter of the image of $\triangle A B C$ and the perimeter of $\triangle A B C$ after the similarity transformation?

Reflection: in the y-axis
Dilation: $(x, y) \rightarrow(3 x, 3 y)$

\qquad
\qquad

Chapter

Test Prep (continued)

18. What are the coordinates of the orthocenter of the triangle with vertices $W(2,7)$,
$X(3,4)$, and $Y(6,7)$?
\qquad
19. What is the value of y ?
(A) 4
(B) 10 (C)
(D) 30
20. What can you conclude from the diagram?
(A) $a \perp k$
(B) $c \perp h$
(C) $a \| b$
(D) $a \| c$

21. What is the value of x ?
(A) 6.25
(B) 10.625
(C) 11.875
(D) 45

22. What is the value of y ?
(A) 27
(B) 42
(C) 75
(D) 105

23. What rotations map the polygon onto itself? Select all that apply.
(A) 30°
(B) 60°
(C) 90°
(D) 120°
(E) 180°

(F) The polygon does not have rotational symmetry.
24. Which congruence statement is correct?
(A) $\triangle A B C \cong \triangle M N P$
(B) $\triangle A C B \cong \triangle M P N$
(C) $\triangle C A B \cong \triangle N M P$

(D) $\triangle B C A \cong \triangle P M N$
