7.1 Extra Practice

In Exercises 1–3, find the sum of the measures of the interior angles of the indicated convex polygon.

1. octagon **2.** 15-gon **3.** 24-gon

In Exercises 4–6, the sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.

4. 900° **5.** 1620° **6.** 2880°

In Exercises 7–10, find the value of x.

- **11.** A pentagon has three interior angles that are congruent and two other interior angles that are supplementary to each other. Find the measure of each of the three congruent angles.
- **12.** You are designing an amusement park ride with cars that spin in a circle around a center axis. The cars are located at the vertices of a regular polygon. The sum of the measures of the interior angles of the polygon is 6120°. If each car can hold four people, what is the maximum number of people who can be on the ride at one time?

7.1 Review & Refresh

In Exercises 1 and 2, find the value of *x*.

3. Which is greater, $m \angle 1$ or $m \angle 2$? Explain your reasoning.

- **4.** Describe the possible lengths of the third side of a triangle with side lengths of 14 feet and 6 feet.
- 5. Write an equation of the line that passes through (8, -5) and is perpendicular to y = -4x + 3.

6. Determine whether the polygon has line symmetry. If so, draw the line(s) of symmetry and describe any reflections that map the figure onto itself.

7. \overline{MN} is a midsegment of $\triangle PQR$. Find the value of x.

- **8.** The sum of the measures of the interior angles of a convex polygon is 2340°. Classify the polygon by the number of sides.
- **9.** Factor $x^2 5x 66$.
- **10.** Find the measure of the exterior angle.

7.1 Self-Assessment

Use the scale to rate your understanding of the learning target and the success criteria.

1 I do not understand. 2 I can do it with help. 3 I can do it on my own.	4 I can teach someone else.	
	Rating	Date
7.1 Angles of Polygons		
Learning Target: Find angle measures of polygons.	1 2 3 4	
I can find the sum of the interior angle measures of a polygon.	1 2 3 4	
I can find interior angle measures of polygons.	1 2 3 4	
I can find exterior angle measures of polygons.	1 2 3 4	

112 Geometry

Practice Workbook and Test Prep

7.2 Extra Practice

In Exercises 1–3, find the value of each variable in the parallelogram.

In Exercises 4–11, find the indicated measure in *MNOP*. Explain your reasoning.

Prove: $\triangle PQT \cong \triangle RST$

13. Three vertices of $\Box WXYZ$ are W(-3, 4), Y(5, 3), and Z(3, 6). Find the coordinates of vertex *X*. Then find the coordinates of the intersection of the diagonals of $\Box WXYZ$.

1. List the sides of $\triangle ABC$ in order from shortest to longest.

In Exercises 2–4, find the indicated measure in $\Box QRST$. Explain your reasoning.

5. Find the value of *x*.

6. The coordinates of a point and its image after a reflection are shown. What is the line of reflection?

 $(-2, -9) \rightarrow (9, 2)$

Decide whether there is enough information to prove that l || m. If so, state the theorem you can use.

8. The hiking trail from A to B is shorter than the trail from C to D. The trail from A to D is the same length as the trail from C to B. What can you conclude about $\angle ADB$ and $\angle CBD$? Explain your reasoning.

1I do not understand.2I can do it with help.3I can do it on my own.	4 I car	n teach	n some	eone else.	
		Rat	ting		Date
7.2 Properties of Parallelograms					
Learning Target: Prove and use properties of parallelograms.	1	2	3	4	
I can prove properties of parallelograms.	1	2	3	4	
I can use properties of parallelograms.	1	2	3	4	
I can solve problems involving parallelograms in the coordinate plane.	1	2	3	4	

7.3 Extra Practice

In Exercises 1–3, state which theorem you can use to show that the quadrilateral is a parallelogram.

In Exercises 4–6, find the values of x and y that make the quadrilateral a parallelogram.

In Exercises 7 and 8, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.

7.
$$J(-1, 2), K(0, 4), L(5, 4), M(4, 2)$$

8. $A(-2, -3), B(1, -4), C(6, 0), D(3, 1)$

- **9.** In the diagram of the handrail for a staircase, $m \angle CAB = 145^{\circ}$ and $\overline{AB} \cong \overline{CD}$.
 - **a.** Explain how to show that *ABDC* is a parallelogram.
 - **b.** Describe how to prove that *CDFE* is a parallelogram.
 - **c.** Can you prove that *EFHG* is a parallelogram? Explain.
 - **d.** Find $m \angle ACD$, $m \angle DCE$, $m \angle CEF$, and $m \angle EFD$.

7.3 Review & Refresh

- 1. Solve the equation 4 2y = 5 6x for y. Justify each step.
- 5. Graph △DEF with vertices D(-1, 2),
 E(1, 0), and F(0, -1) and its image after a dilation with a scale factor of 2.

2. Find the value of *x*.

- **3.** Find the distance between X(-1, 5) and Y(12, 2).
- 4. Three vertices of □ABCD are A(-1, -4),
 B(1, -1), and C(-4, 1). Find the coordinates of the remaining vertex.

6. State which theorem you can use to show that the quadrilateral is a parallelogram.

7. Place a rectangle with a length of 3l units and a width of l units in the coordinate plane. Find the length of the diagonal.

7.3 Self-Assessment

1 I do not understand. 2 I can do it with help. 3 I can do it on my own.	4 I can teach someone else.	
	Rating	Date
7.3 Proving That a Quadrilateral Is a Parallelogram		
Learning Target: Prove that a quadrilateral is a parallelogram.	1 2 3 4	
I can identify features of a parallelogram.	1 2 3 4	
I can prove that a quadrilateral is a parallelogram.	1 2 3 4	
I can find missing lengths that make a quadrilateral a parallelogram.	1 2 3 4	
I can show that a quadrilateral in the coordinate plane is a parallelogram.	1 2 3 4	

7.4 **Extra Practice**

- **1.** For any rhombus *MNOP*, decide whether the statement $\overline{MO} \cong \overline{NP}$ is *always* or sometimes true. Draw a diagram and explain your reasoning.
- **2.** For any rectangle *PQRS*, decide whether the statement $\angle PQS \cong \angle RSQ$ is *always* or sometimes true. Draw a diagram and explain your reasoning.

In Exercises 3-5, the diagonals of rhombus ABCD intersect at E. Given that $m \angle BCA = 44^\circ$, AB = 9, and AE = 7, find the indicated measure.

- **3.** *BC*
- **4.** *AC*
- 5. $m \angle ADC$

In Exercises 6–8, the diagonals of rectangle EFGH intersect at I. Given that $m \angle HFG = 31^{\circ}$ and EG = 17, find the indicated measure.

- **6.** *m∠FHG*
- **7.** *HF*
- **8.** *m∠EFH*

- **9.** *PK*
- **10.** *m*∠*PKN*
- **11.** *m∠MNK*

square. Give all names that apply. Explain your reasoning.

12. J(3, 2), K(1, 1), L(-1, 2), M(1, 3)**13.** J(-2, 5), K(0, 7), L(3, 4), M(1, 2)

М

In Exercises 1 and 2, use the graphs of f and g to describe the transformation from the graph of f to the graph of g.

1. f(x) = 11x - 3, g(x) = f(x + 5)

- **2.** f(x) = 15 8x, g(x) = f(3x)
- **3.** Rewrite the definition as a biconditional statement.
 - **Definition** A *midsegment* of a triangle is a segment that connects the midpoints of two sides of the triangle.

In Exercises 4 and 5, solve the inequality. Graph the solution, if possible.

4. $|4m+1| - 5 \le -2$ **5.** 9(t+1) < 3(t+9)

6. Find the values of *x* and *y* in the parallelogram.

- **7.** Find the measure of each interior angle and each exterior angle of a regular 30-gon.
- **8.** Find the perimeter and area of $\triangle XYZ$ with vertices X(5, 1), Y(-1, 1), and Z(3, 2).
- 9. Decide whether you can use the given information ∠D ≅ ∠Q, ∠F ≅ ∠S, and *EF* ≅ *RS* to prove that △DEF ≅ △QRS. Explain your reasoning.
- **10.** Find the length of \overline{AB} . Explain your reasoning.

Use the scale to rate your understanding of the learning target and the success criteria.

1 I do not understand. 2 I can do it with help. 3 I can do it on my own.	4 I can teach someone else.	
	Rating	Date
7.4 Properties of Special Parallelograms		
Learning Target: Explain the properties of special parallelograms.	1 2 3 4	
I can identify special quadrilaterals.	1 2 3 4	
I can explain how special parallelograms are related.	1 2 3 4	
I can find missing measures of special parallelograms.	1 2 3 4	
I can identify special parallelograms in a coordinate plane.	1 2 3 4	

7.5 Extra Practice

Show that the quadrilateral with vertices Q(0, 3), R(0, 6), S(-6, 0) and T(-3, 0) is a trapezoid. Decide whether it is isosceles. Then find the length of its midsegment.

In Exercises 2 and 3, find $m \angle K$ and $m \angle L$.

In Exercises 8 and 9, give the most specific name for the quadrilateral. Explain your reasoning.

7.5 Review & Refresh

1. Decide whether enough information is given to prove that $\triangle RUT$ and $\triangle RUS$ are congruent using the HL Congruence Theorem.

- 2. Find the distance from (6, -1) to the line y = x + 7.
- **3.** Classify the quadrilateral.

4. Find *DB* in *□ABCD*. Explain your reasoning.

5. State which theorem you can use to show that the quadrilateral is a parallelogram.

- 6. Graph *EF* with endpoints *E*(2, 7) and *F*(1, 4) and its image after a reflection in the *y*-axis, followed by a translation 3 units down.
- **7.** Find the perimeter of the outer frame of the bridge.

7.5

Self-Assessment

1I do not understand.2I can do it with help.3I can do it on my own.	4 I can teach someone else.	
	Rating	Date
7.5 Properties of Trapezoids and Kites		
Learning Target: Use properties of trapezoids and kites to find measures.	1 2 3 4	
I can identify trapezoids and kites.	1 2 3 4	
I can use properties of trapezoids and kites to solve problems.	1 2 3 4	
I can find the length of the midsegment of a trapezoid.	1 2 3 4	
I can explain the hierarchy of quadrilaterals.	1 2 3 4	

Chapter 7 Chapter Self-Assessment

1 I do not understand. 2 I can do it with help. 3 I can do it on my own.										
	Rating									
Chapter 7 Quadrilaterals and Other Polygons										
Learning Target: Understand quadrilaterals and other polygons.	1	2	3	4						
I can find angles of polygons.	1	2	3	4						
I can describe properties of parallelograms.	1	2	3	4						
I can use properties of parallelograms.	1	2	3	4						
I can identify special quadrilaterals.	1	2	3	4						
7.1 Angles of Polygons										
Learning Target: Find angle measures of polygons.	1	2	3	4						
I can find the sum of the interior angle measures of a polygon.	1	2	3	4						
I can find interior angle measures of polygons.	1	2	3	4						
I can find exterior angle measures of polygons.	1	2	3	4						
7.2 Properties of Parallelograms										
Learning Target: Prove and use properties of parallelograms.	1	2	3	4						
I can prove properties of parallelograms.	1	2	3	4						
I can use properties of parallelograms.	1	2	3	4						
I can solve problems involving parallelograms in the coordinate plane.	1	2	3	4						
7.3 Proving That a Quadrilateral Is a Parallelogram										
Learning Target: Prove that a quadrilateral is a parallelogram.	1	2	3	4						
I can identify features of a parallelogram.	1	2	3	4						
I can prove that a quadrilateral is a parallelogram.	1	2	3	4						
I can find missing lengths that make a quadrilateral a parallelogram.	1	2	3	4						
I can show that a quadrilateral in the coordinate plane is a parallelogram.	1	2	3	4						

Chapter 7

Chapter Self-Assessment (continued)

		Ra	ting	Date	
7.4 Properties of Special Parallelograms					
Learning Target: Explain the properties of special parallelograms.	1	2	3	4	
I can identify special quadrilaterals.	1	2	3	4	
I can explain how special parallelograms are related.	1	2	3	4	
I can find missing measures of special parallelograms.	1	2	3	4	
I can identify special parallelograms in a coordinate plane.	1	2	3	4	
7.5 Properties of Trapezoids and Kites					
Learning Target: Use properties of trapezoids and kites to find measures.	1	2	3	4	
I can identify trapezoids and kites.	1	2	3	4	
I can use properties of trapezoids and kites to solve problems.	1	2	3	4	
I can find the length of the midsegment of a trapezoid.	1	2	3	4	
I can explain the hierarchy of quadrilaterals.	1	2	3	4	

1. What is *CD*?

3. What is the value of *x*?

- 5. Which reason corresponds with the third statement in the proof, " $\angle ABC \cong \angle DBE$?"
 - (A) Corresponding parts of congruent triangles are congruent.
 - B Definition of congruent angles
 - © Vertical Angles Congruence Theorem
 - Definition of angle bisector

2. What is the measure of the exterior angle?

4. What is $m \angle LMN$?

Given $\overline{AC} \cong \overline{DE}, \ \angle C \cong \angle E, \ \angle A \cong \angle D$ Prove $\angle ABC \cong \angle DBE$	
STATEMENTS	REASONS E
1. $\overline{AC} \cong \overline{DE}, \angle C \cong \angle E,$ $\angle A \cong \angle D$	1. Given
2. $\triangle ABC \cong \triangle DBE$	2. ASA Congruence Theorem
3. $\angle ABC \cong \angle DBE$	3.

- 6. Which of the following statements is false? 7. V
 - A square is a rhombus.
 - B A square is a parallelogram.
 - ⓒ A rectangle is a parallelogram.
 - D A parallelogram is a rhombus.
- 8. Three vertices of a parallelogram are (-3, 1), (-1, 4), and (5, 1). Which of the following can be the fourth vertex of the parallelogram? Select all that apply.
 - (5, −1)
 - ₿ (-1, -2)
 - ⓒ (3, -2)
 - (b) (3,4) (b)
 - (E) (-9,4) (E)
 - (F) (7,4)
- **10.** What is the value of *x*?

7. What is $m \angle F$?

- **9.** Which of the following angle measures are possible exterior angle measures for regular polygons? Select all that apply.
 - A 8°
 - B 12°
 - © 54°
 - D 108°
 - € 120°
 - ₱ 162°
- **11.** What is the 152nd term of the sequence A, G, T, C, A, G, T, C, A, G, T, C, ...?

12. $\triangle JKL$ has vertices J(-4, 5), K(2, 3), and L(0, 1). What is the perimeter of its midsegment triangle?

Chapter 7 Test Prep (continued)

- **13.** What is the most specific name for the quadrilateral with vertices (6, 8), (5, 6), (9, 7), and (10, 9)?
 - (A) parallelogram
 - B rhombus
 - © rectangle
 - D square
- **15.** What can you conclude from the diagram?
 - A EH = GH
 - (B) EH < GH
 - \bigcirc EH > GH
 - D No conclusion can be made.
- 16. What is the distance between the point(3, 2) and its image after the composition?

Translation: $(x, y) \rightarrow (x + 7, y - 1)$ Translation: $(x, y) \rightarrow (x - 2, y + 13)$

							units
Θ	Θ	Θ	Θ	Θ	Θ	Θ	
	\bigcirc	\oslash	\bigcirc	\oslash	\bigcirc		
\odot	\odot	\odot	\odot	\odot	\odot	\odot	
0	0	0	0	0	0	0	
1	1	1	1	1	1	1	
2	2	2	2	2	2	2	
3	3	3	3	3	3	3	
4	4	4	4	4	4	4	
5	5	(5)	5	5	5	(5)	
6	6	6	6	6	6	6	
7	\bigcirc	1	1	1	1	1	
8	8	8	8	8	8	8	
9	9	9	9	9	9	9	

Copyright © Big Ideas Learning, LLC All rights reserved.

14. Which of the following would not provide enough information to prove that the quadrilateral is a parallelogram?

(A)
$$\overline{DE} \cong \overline{FG}, \overline{EF} \cong \overline{GD}$$

(B) $\overline{EF} \cong \overline{GD}, \overline{EF} \parallel \overline{GD}$
(C) $\overline{DE} \parallel \overline{FG}, \overline{EF} \parallel \overline{GD}$
(D) $\overline{EF} \cong \overline{GD}, \overline{DE} \parallel \overline{FG}$
(C) $\overline{FF} \cong \overline{GD}, \overline{DE} \parallel \overline{FG}$

17. $\triangle ABC$ has vertices A(-5, 8), B(7, 8), and C(7, 3). What is the difference of the perimeter of the image of $\triangle ABC$ and the perimeter of $\triangle ABC$ after the similarity transformation?

Reflection: in the *y*-axis **Dilation:** $(x, y) \rightarrow (3x, 3y)$

							units
Θ	\odot	Θ	\odot	Θ	\odot	Θ	
	\bigcirc	\bigcirc	\bigcirc	\oslash	\bigcirc		
\odot	\odot	\odot	\odot	\odot	\odot	\odot	
0	0	0	0	0	0	0	
1	1	1	1	1	1	1	
2	2	2	2	2	2	2	
3	3	3	3	3	3	3	
4	4	4	4	4	4	4	
5	5	5	5	5	5	5	
6	6	6	6	6	6	6	
1	\bigcirc	1	\bigcirc	1	\bigcirc	\bigcirc	
8	8	8	8	8	8	8	
9	9	9	9	9	9	9	

 $(2y + 21)^{\circ}$

Chapter 7 Test Prep (continued)

- **18.** What are the coordinates of the orthocenter of the triangle with vertices W(2, 7), X(3, 4), and Y(6, 7)?
- **19.** What is the value of *y*?

20. What is the value of x?

A 27

B 42

© 75

D 105

21. What can you conclude from the diagram? **22.** What is the value of *y*?

- A 30°
- B 60°
- © 90°
- 120°
- E 180°
- (F) The polygon does not have rotational symmetry.
- 24. Which congruence statement is correct?

 - (B) $\triangle ACB \cong \triangle MPN$
 - $\bigcirc \triangle CAB \cong \triangle NMP$
 - $\bigcirc \triangle BCA \cong \triangle PMN$

Practice Workbook and Test Prep

