6.8 Piecewise Functions

Essential Question How can you describe a function that is

represented by more than one equation?

EXPLORATION 1

Analyzing a Piecewise Function

Work with a partner.

- **a.** Does the graph represent *y* as a function of *x*? Justify your conclusion.
- **b.** What is the value of the function when *x* = 0? How can you tell?
- **c.** Find the domain of the exponential piece of the graph.

d. Find the domain of the linear piece of the graph.

e. Combine the results of parts (c) and (d) to write a single description of the function.

EXPLORATION 2

Analyzing a Piecewise Function

Work with a partner.

- **a.** Does the graph represent *y* as a function of *x*? Justify your conclusion.
- **b.** Find the domain of each piece of the graph.

Communicate Your Answer

- **3.** How can you describe a function that is represented by more than one equation?
- **4.** Find the domain of each piece of the function represented by the graph.

CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to justify your conclusions and communicate them - to others.

6.8 Lesson

Core Vocabulary

step function, p. 354

piecewise function, p. 352

What You Will Learn

- Evaluate piecewise functions.
- Graph and analyze piecewise functions.
- Graph and write step functions.

Evaluating Piecewise Functions

🔄 Core Concept

Piecewise Function

A **piecewise function** is a function defined by two or more equations. Each "piece" of the function applies to a different part of its domain. An example is shown below.

$$f(x) = \begin{cases} x - 1, & \text{if } x \le 0\\ x^2 + 1, & \text{if } x > 0 \end{cases}$$

- The expression x 1 represents the value of f when x is less than or equal to 0.
- The expression $x^2 + 1$ represents the value of *f* when *x* is greater than 0.

EXAMPLE 1

Evaluating a Piecewise Function

Evaluate the function *f* above when (a) x = 0 and (b) x = 4.

SOLUTION

- **a.** f(x) = x 1 Because $0 \le 0$, use the first equation.
 - f(0) = 0 1 Substitute 0 for *x*.
 - f(0) = -1 Simplify.
 - The value of f is -1 when x = 0.
- **b.** $f(x) = x^2 + 1$ Because 4 > 0, use the second equation.
 - $f(4) = (4)^2 + 1$ Substitute 4 for x.
 - f(4) = 17 Simplify.
 - The value of f is 17 when x = 4.

Monitoring Progress

Evaluate the function.

$$f(x) = \begin{cases} x + 4, & \text{if } x < -2 \\ 2^{-x}, & \text{if } -2 \le x \le 5 \\ 3x^2, & \text{if } x > 5 \end{cases}$$
1. $f(-8)$
2. $f(-2)$
3. $f(0)$
4. $f(3)$
5. $f(5)$
5. $f(10)$

Graphing and Analyzing Piecewise Functions

EXAMPLE 2

Graphing a Piecewise Function

Graph $y = \begin{cases} x^2 - 1, & \text{if } x < 0 \\ 4, & \text{if } x \ge 0 \end{cases}$. Describe the domain and range.

SOLUTION

- **Step 1** Graph $y = x^2 1$ for x < 0. Because x is not equal to 0, use an open circle at (0, -1).
- **Step 2** Graph y = 4 for $x \ge 0$. Because x is greater than or equal to 0, use a closed circle at (0, 4).

The domain is $\{x \mid -\infty < x < \infty\}$.

The range is $\{y \mid y > -1\}$.

Monitoring Progress

Graph the function. Describe the domain and range.

7	$y = \begin{cases} 2x + 1, \\ x^2, \end{cases}$	if $x \le 0$	8 $y = \int -3,$	if $x \leq -1$
/.		if x > 0	6. $y^{-1} = 1$	if $x > -1$

EXAMPLE 3 Analyzing a Piecewise Function

In Example 2, identify the intercept(s) of the graph of the function, and the interval(s) on which the function is increasing, decreasing, or constant.

SOLUTION

An x-intercept of a graph occurs when y = 0. So, the x-intercept is -1. The y-intercept of a graph occurs when x = 0. Because there is an open circle at (0, -1) and a closed circle at (0, 4), the y-intercept is 4.

The function is decreasing when x < 0 and the function is constant when $x \ge 0$.

So, the x-intercept is -1 and the y-intercept is 4. The function is decreasing on the interval $(-\infty, 0)$ and constant on the interval $(0, \infty)$.

Monitoring Progress

Identify the intercept(s) of the graph of the function, and the intervals(s) on which the function is increasing, decreasing, or constant.

STUDY TIP

The graph of a step function looks like a staircase.

Graphing and Writing Step Functions

A **step function** is a piecewise function defined by a constant value over each part of its domain. The graph of a step function consists of a series of line segments.

EXAMPLE 4

Graphing and Writing a Step Function

You day the rentire solution of the second s

You rent a karaoke machine for 5 days. The rental company charges \$50 for the first day and \$25 for each additional day. Write and graph a step function that represents the relationship between the number x of days and the total cost y (in dollars) of renting the karaoke machine.

SOLUTION

Step 1 Use a table to organize the information.

Number of days	Total cost (dollars)	
$0 < x \le 1$	50	
$1 < x \leq 2$	75	
$2 < x \leq 3$	100	
$3 < x \le 4$	125	
$4 < x \le 5$	150	

Step 2 Write the step function.

	(50,	$\text{if } 0 < x \le 1$
	75,	if $1 < x \le 2$
f(x) = c	100,	if $2 < x \le 3$
	125,	if $3 < x \le 4$
	150,	if $4 < x \le 5$

Step 3 Graph the step function.

Monitoring Progress

11. A landscaper rents a wood chipper for 4 days. The rental company charges \$100 for the first day and \$50 for each additional day. Write and graph a step function that represents the relationship between the number *x* of days and the total cost *y* (in dollars) of renting the chipper.

-Vocabulary and Core Concept Check

- 1. VOCABULARY Compare piecewise functions and step functions.
- 2. WRITING Describe how to write a step function given its graph.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–10, evaluate the function. (See Example 1.)

$$f(x) = \begin{cases} 2x^2 - 1, & \text{if } x < -2\\ 2x + 1, & \text{if } x \ge -2 \end{cases}$$
$$g(x) = \begin{cases} -3x, & \text{if } x \le -1\\ 3x, & \text{if } -1 < x < 2\\ x^2 - 5, & \text{if } x \ge 2 \end{cases}$$

- **3.** *f*(−3)
- **4.** *f*(−2)
- **5.** *f*(0)
- **6.** *f*(5)
- **7.** *g*(−1)
- **8.** g(0)
- **9.** *g*(2)
- **10.** *g*(5)

In Exercises 11–16, graph the function. Describe the domain and range. (*See Example 2.*)

11. $y = \begin{cases} -x^2, & \text{if } x < 2\\ x - 6, & \text{if } x \ge 2 \end{cases}$ 12. $y = \begin{cases} 2x^2, & \text{if } x \le 0\\ -2x^2, & \text{if } x > 0 \end{cases}$ 13. $y = \begin{cases} -3x - 2, & \text{if } x \le -1\\ 2^x + 2, & \text{if } x > -1 \end{cases}$ 14. $y = \begin{cases} x^2 - 3, & \text{if } x < 4\\ 4x - 4, & \text{if } x \ge 4 \end{cases}$ 15. $y = \begin{cases} 2^{-x} - 8, & \text{if } x < -3\\ x - 1, & \text{if } -3 \le x \le 3\\ -2x^2 + 8, & \text{if } x > 3 \end{cases}$ 16. $y = \begin{cases} 2x^2 + 1, & \text{if } x \le -1\\ -2^x + 2, & \text{if } -1 < x < 2\\ x^2 + 2^x, & \text{if } x \ge 2 \end{cases}$ **17.** ERROR ANALYSIS Describe and correct the error in finding f(1) when $f(x) = \begin{cases} 3x^2, & \text{if } x < 1 \\ x - 15, & \text{if } x \ge 1 \end{cases}$.

18. ERROR ANALYSIS Describe and correct the error in graphing $y = \begin{cases} (x + 4)^2, & \text{if } x \le -2\\ 1, & \text{if } x > -2 \end{cases}$.

Identify the intercept(s) of the function, and the interval(s) on which the function is increasing, decreasing, or constant. (*See Example 3.*)

In Exercises 23 and 24, write a step function for the graph.

In Exercises 25 and 26, graph the step function. Describe the domain and range.

$$\mathbf{25.} \quad f(x) = \begin{cases} -4, & \text{if } 1 < x \le 2\\ -6, & \text{if } 2 < x \le 3\\ -8, & \text{if } 3 < x \le 4\\ -10, & \text{if } 4 < x \le 5 \end{cases}$$
$$\mathbf{26.} \quad f(x) = \begin{cases} -2, & \text{if } -6 \le x < -5\\ -1, & \text{if } -5 \le x < -5\\ 0, & \text{if } -3 \le x < -2\\ 1, & \text{if } -2 \le x < 0 \end{cases}$$

- 27. MODELING WITH MATHEMATICS The cost to join an intramural sports league is \$180 per team and includes the first five team members. For each additional team member, there is a \$30 fee. You plan to have nine people on your team. Write and graph a step function that represents the relationship between the number p of people on your team and the total cost of joining the league. (See Example 4.)
- **28. MODELING WITH MATHEMATICS** The rates for a parking garage are shown. Write and graph a step function that represents the relationship between the number *x* of hours a car is parked in the garage and the total cost of parking in the garage for 1 day.

Daily Parking Garage	•
Rates	
\$4 per hour	
\$15 daily maximum	
0	0

29. REASONING The piecewise function *f* consists of two "pieces," one linear piece and one quadratic piece. The graph of *f* is shown.

- **a.** What is the value of f(-10)?
- **b.** What is the value of f(8)?
- **30.** USING STRUCTURE The output *y* of the *greatest integer function* is the greatest integer less than or equal to the input value *x*. This function is written as f(x) = [x]. Graph the function for $-4 \le x < 4$. Is it a piecewise function? a step function? Explain.

31. THOUGHT PROVOKING Explain why

$$y = \begin{cases} 2x - 2, & \text{if } x \le 3\\ -2^x, & \text{if } x \ge 3 \end{cases}$$

does not represent a function. How can you redefine *y* so that it does represent a function?

32. CRITICAL THINKING Describe how the graph of each piecewise function changes when < is replaced with ≤ and ≥ is replaced with >. Do the domain and range change? Explain.

a.
$$f(x) = \begin{cases} x^2 + 2, & \text{if } x < 2\\ 3^{-x} + 1, & \text{if } x \ge 2 \end{cases}$$

b. $f(x) = \begin{cases} \frac{1}{2}x + \frac{3}{2}, & \text{if } x < 1\\ 3x^2 - 1, & \text{if } x \ge 1 \end{cases}$

-Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

