Essential Question How are similar polygons related?

EXPLORATION 1 Comparing Triangles after a Dilation

Work with a partner. Use dynamic geometry software to draw any $\triangle A B C$. Dilate $\triangle A B C$ to form a similar $\triangle A^{\prime} B^{\prime} C^{\prime}$ using any scale factor k and any center of dilation.

a. Compare the corresponding angles of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle A B C$.
b. Find the ratios of the lengths of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ to the lengths of the corresponding sides of $\triangle A B C$. What do you observe?
c. Repeat parts (a) and (b) for several other triangles, scale factors, and centers of dilation. Do you obtain similar results?

EXPLORATION 2 Comparing Triangles after a Dilation

Work with a partner. Use dynamic geometry software to draw any $\triangle A B C$. Dilate $\triangle A B C$ to form a similar $\triangle A^{\prime} B^{\prime} C^{\prime}$ using any scale factor k and any center of dilation.
a. Compare the perimeters of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle A B C$. What do you observe?
b. Compare the areas of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and $\triangle A B C$. What do you observe?
c. Repeat parts (a) and (b) for several other triangles, scale factors, and centers of dilation. Do you obtain similar results?

Communicate Your Answer

3. How are similar polygons related?
4. A $\triangle R S T$ is dilated by a scale factor of 3 to form $\triangle R^{\prime} S^{\prime} T^{\prime}$. The area of $\triangle R S T$ is 1 square inch. What is the area of $\triangle R^{\prime} S^{\prime} T^{\prime}$?

8.1
 Lesson

Core Vocabulary

Previous
similar figures
similarity transformation
corresponding parts

ANALYZING MATHEMATICAL RELATIONSHIPS

Notice that any two congruent figures are also similar. In $\triangle L M N$ and $\triangle W X Y$ below, the scale factor is $\frac{5}{5}=\frac{6}{6}=\frac{7}{7}=1$. So, you can write $\triangle L M N \sim \triangle W X Y$ and $\triangle L M N \cong \triangle W X Y$.

READING

In a statement of proportionality, any pair of ratios forms a true proportion.

G) Core Concept

Corresponding Parts of Similar Polygons

In the diagram below, $\triangle A B C$ is similar to $\triangle D E F$. You can write " $\triangle A B C$ is similar to $\triangle D E F$ " as $\triangle A B C \sim \triangle D E F$. A similarity transformation preserves angle measure. So, corresponding angles are congruent. A similarity transformation also enlarges or reduces side lengths by a scale factor k. So, corresponding side lengths are proportional.

Corresponding angles
$\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F \quad \frac{D E}{A B}=\frac{E F}{B C}=\frac{F D}{C A}=k$

EXAMPLE 1 Using Similarity Statements

In the diagram, $\triangle R S T \sim \triangle X Y Z$.
a. Find the scale factor from $\triangle R S T$ to $\triangle X Y Z$.
b. List all pairs of congruent angles.
c. Write the ratios of the corresponding side lengths in a statement of proportionality.

SOLUTION

a. $\frac{X Y}{R S}=\frac{12}{20}=\frac{3}{5}$
$\frac{Y Z}{S T}=\frac{18}{30}=\frac{3}{5}$
$\frac{Z X}{T R}=\frac{15}{25}=\frac{3}{5}$

So, the scale factor is $\frac{3}{5}$.
b. $\angle R \cong \angle X, \angle S \cong \angle Y$, and $\angle T \cong \angle Z$.
c. Because the ratios in part (a) are equal, $\frac{X Y}{R S}=\frac{Y Z}{S T}=\frac{Z X}{T R}$.

Monitoring Progress

 Help in English and Spanish at BigldeasMath.com1. In the diagram, $\triangle J K L \sim \triangle P Q R$. Find the scale factor from $\triangle J K L$ to $\triangle P Q R$. Then list all pairs of congruent angles and write the ratios of the corresponding side lengths in a statement of proportionality.

Finding Corresponding Lengths in Similar Polygons

READING

Corresponding lengths in similar triangles include side lengths, altitudes, medians, and midsegments.

FORMULATING

A PLAN
There are several ways to write the proportion. For example, you could write $\frac{D F}{M P}=\frac{E F}{N P}$.

Core Concept

Corresponding Lengths in Similar Polygons

If two polygons are similar, then the ratio of any two corresponding lengths in the polygons is equal to the scale factor of the similar polygons.

EXAMPLE 2 Finding a Corresponding Length

In the diagram, $\triangle D E F \sim \triangle M N P$. Find the value of x.

SOLUTION

The triangles are similar, so the corresponding side lengths are proportional.

$$
\begin{aligned}
\frac{M N}{D E} & =\frac{N P}{E F} & & \text { Write proportion. } \\
\frac{18}{15} & =\frac{30}{x} & & \text { Substitute. } \\
18 x & =450 & & \text { Cross Products Property } \\
x & =25 & & \text { Solve for } x .
\end{aligned}
$$

The value of x is 25 .

EXAMPLE 3 Finding a Corresponding Length

In the diagram, $\triangle T P R \sim \triangle X P Z$. Find the length of the altitude $\overline{P S}$.

SOLUTION

First, find the scale factor from $\triangle X P Z$ to $\triangle T P R$.

$$
\frac{T R}{X Z}=\frac{6+6}{8+8}=\frac{12}{16}=\frac{3}{4}
$$

Because the ratio of the lengths of the altitudes in similar triangles is equal to the scale factor, you can write the following proportion.

$$
\begin{array}{ll}
\frac{P S}{P Y}=\frac{3}{4} & \text { Write proportion. } \\
\frac{P S}{20}=\frac{3}{4} & \text { Substitute } 20 \text { for } P Y . \\
P S=15 & \text { Multiply each side by } 20 \text { and simplify. }
\end{array}
$$

The length of the altitude $\overline{P S}$ is 15 .

Monitoring Progress Help in English and Spanish at BigdoeasWath.com

2. Find the value of x.

$A B C D \sim Q R S T$
3. Find $K M$.

Finding Perimeters and Areas of Similar Polygons

G Theorem

ANALYZING
 MATHEMATICAL RELATIONSHIPS

When two similar polygons have a scale factor of k, the ratio of their perimeters is equal to k.

Theorem 8.1 Perimeters of Similar Polygons

If two polygons are similar, then the ratio of their perimeters is equal to the ratios of their corresponding side lengths.

If $K L M N \sim P Q R S$, then $\frac{P Q+Q R+R S+S P}{K L+L M+M N+N K}=\frac{P Q}{K L}=\frac{Q R}{L M}=\frac{R S}{M N}=\frac{S P}{N K}$.
Proof Ex. 52, p. 430; BigIdeasMath.com

EXAMPLE 4 Modeling with Mathematics

STUDY TIP

You can also write the scale factor as a decimal. In Example 4, you can write the scale factor as 0.8 and multiply by 150 to get $x=0.8(150)=120$.

Gazebo B

Gazebo A

Monitoring Progress
4. The two gazebos shown are similar pentagons. Find the perimeter of Gazebo A.

G Theorem

ANALYZING MATHEMATICAL RELATIONSHIPS

When two similar polygons have a scale factor of k, the ratio of their areas is equal to k^{2}.

Theorem 8.2 Areas of Similar Polygons

If two polygons are similar, then the ratio of their areas is equal to the squares of the ratios of their corresponding side lengths.

If $K L M N \sim P Q R S$, then $\frac{\text { Area of } P Q R S}{\text { Area of } K L M N}=\left(\frac{P Q}{K L}\right)^{2}=\left(\frac{Q R}{L M}\right)^{2}=\left(\frac{R S}{M N}\right)^{2}=\left(\frac{S P}{N K}\right)^{2}$.
Proof Ex. 53, p. 430; BigIdeasMath.com

EXAMPLE 5 Finding Areas of Similar Polygons

In the diagram, $\triangle A B C \sim \triangle D E F$. Find the area of $\triangle D E F$.

$$
\text { Area of } \triangle A B C=36 \mathrm{~cm}^{2}
$$

SOLUTION

Because the triangles are similar, the ratio of the area of $\triangle A B C$ to the area of $\triangle D E F$ is equal to the square of the ratio of $A B$ to $D E$. Write and solve a proportion to find the area of $\triangle D E F$. Let A represent the area of $\triangle D E F$.

$$
\begin{aligned}
\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F} & =\left(\frac{A B}{D E}\right)^{2} & & \text { Areas of Similar Polygons Theorem } \\
\frac{36}{A} & =\left(\frac{10}{5}\right)^{2} & & \text { Substitute. } \\
\frac{36}{A} & =\frac{100}{25} & & \text { Square the right side of the equation. } \\
36 \cdot 25 & =100 \cdot A & & \text { Cross Products Property } \\
900 & =100 A & & \text { Simplify. } \\
9 & =A & & \text { Solve for } A .
\end{aligned}
$$

The area of $\triangle D E F$ is 9 square centimeters.

Monitoring Progress

5. In the diagram, GHJK $\sim L M N P$. Find the area of $L M N P$.

Area of $G H J K=84 \mathrm{~m}^{2}$

Deciding Whether Polygons Are Similar

EXAMPLE 6 Deciding Whether Polygons Are Similar

Decide whether $A B C D E$ and $K L Q R P$ are similar. Explain your reasoning.

SOLUTION

Corresponding sides of the pentagons are proportional with a scale factor of $\frac{2}{3}$. However, this does not necessarily mean the pentagons are similar. A dilation with center A and scale factor $\frac{2}{3}$ moves $A B C D E$ onto $A F G H J$. Then a reflection moves AFGHJ onto KLMNP.

KLMNP does not exactly coincide with $K L Q R P$, because not all the corresponding angles are congruent. (Only $\angle A$ and $\angle K$ are congruent.)

Because angle measure is not preserved, the two pentagons are not similar.

Monitoring Progress (D)) Help in English and Spanish at BigldeasMath.com

Refer to the floor tile designs below. In each design, the red shape is a regular hexagon.

Tile Design 1

Tile Design 2
6. Decide whether the hexagons in Tile Design 1 are similar. Explain.
7. Decide whether the hexagons in Tile Design 2 are similar. Explain.

-Vocabulary and Core Concept Check

1. COMPLETE THE SENTENCE For two figures to be similar, the corresponding angles must be \qquad —, and the corresponding side lengths must be \qquad —.
2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, find the scale factor. Then list all pairs of congruent angles and write the ratios of the corresponding side lengths in a statement of proportionality. (See Example 1.)
3. $\triangle A B C \sim \triangle L M N$

4. $D E F G \sim P Q R S$

In Exercises 5-8, the polygons are similar. Find the value of x. (See Example 2.)
5.

6.

7.

8.

In Exercises 9 and 10, the black triangles are similar. Identify the type of segment shown in blue and find the value of the variable. (See Example 3.)
9.

10.

In Exercises 11 and 12, RSTU $\sim A B C D$. Find the ratio of their perimeters.
11.

12.

In Exercises 13-16, two polygons are similar. The perimeter of one polygon and the ratio of the corresponding side lengths are given. Find the perimeter of the other polygon.
13. perimeter of smaller polygon: 48 cm ; ratio: $\frac{2}{3}$
14. perimeter of smaller polygon: 66 ft ; ratio: $\frac{3}{4}$
15. perimeter of larger polygon: 120 yd ; ratio: $\frac{1}{6}$
16. perimeter of larger polygon: 85 m ; ratio: $\frac{2}{5}$
17. MODELING WITH MATHEMATICS A school gymnasium is being remodeled. The basketball court will be similar to an NCAA basketball court, which has a length of 94 feet and a width of 50 feet. The school plans to make the width of the new court 45 feet. Find the perimeters of an NCAA court and of the new court in the school. (See Example 4.)
18. MODELING WITH MATHEMATICS Your family has decided to put a rectangular patio in your backyard, similar to the shape of your backyard. Your backyard has a length of 45 feet and a width of 20 feet. The length of your new patio is 18 feet. Find the perimeters of your backyard and of the patio.

In Exercises 19-22, the polygons are similar. The area of one polygon is given. Find the area of the other polygon.
(See Example 5.)
19.

20.

21.

22.

23. ERROR ANALYSIS Describe and correct the error in finding the perimeter of triangle B. The triangles are similar.

24. ERROR ANALYSIS Describe and correct the error in finding the area of rectangle B. The rectangles are similar.

$$
N
$$

In Exercises 25 and 26, decide whether the red and blue polygons are similar. (See Example 6.)
25.

26.

27. REASONING Triangles $A B C$ and $D E F$ are similar. Which statement is correct? Select all that apply.
(A) $\frac{B C}{E F}=\frac{A C}{D F}$
(B) $\frac{A B}{D E}=\frac{C A}{F E}$
(C) $\frac{A B}{E F}=\frac{B C}{D E}$
(D) $\frac{C A}{F D}=\frac{B C}{E F}$

ANALYZING RELATIONSHIPS In Exercises 28-34, $J K L M \sim E F G H$.

28. Find the scale factor of $J K L M$ to $E F G H$.
29. Find the scale factor of $E F G H$ to $J K L M$.
30. Find the values of x, y, and z.
31. Find the perimeter of each polygon.
32. Find the ratio of the perimeters of $J K L M$ to $E F G H$.
33. Find the area of each polygon.
34. Find the ratio of the areas of $J K L M$ to $E F G H$.
35. USING STRUCTURE Rectangle A is similar to rectangle B. Rectangle A has side lengths of 6 and 12. Rectangle B has a side length of 18 . What are the possible values for the length of the other side of rectangle B? Select all that apply.
(A) 6
(B) 9
(C) 24
(D) 36
36. DRAWING CONCLUSIONS In table tennis, the table is a rectangle 9 feet long and 5 feet wide. A tennis court is a rectangle 78 feet long and 36 feet wide. Are the two surfaces similar? Explain. If so, find the scale factor of the tennis court to the table.

MATHEMATICAL CONNECTIONS In Exercises 37 and 38, the two polygons are similar. Find the values of x and y.
37.

38.

ATTENDING TO PRECISION In Exercises 39-42, the figures are similar. Find the missing corresponding side length.
39. Figure A has a perimeter of 72 meters and one of the side lengths is 18 meters. Figure B has a perimeter of 120 meters.
40. Figure A has a perimeter of 24 inches. Figure B has a perimeter of 36 inches and one of the side lengths is 12 inches.
41. Figure A has an area of 48 square feet and one of the side lengths is 6 feet. Figure B has an area of 75 square feet.
42. Figure A has an area of 18 square feet. Figure B has an area of 98 square feet and one of the side lengths is 14 feet.

CRITICAL THINKING In Exercises 43-48, tell whether the polygons are always, sometimes, or never similar.
43. two isosceles triangles
45. two rhombuses
46. two squares
47. two regular polygons
48. a right triangle and an equilateral triangle
49. MAKING AN ARGUMENT Your sister claims that when the side lengths of two rectangles are proportional, the two rectangles must be similar. Is she correct? Explain your reasoning.
50. HOW DO YOU SEE IT? You shine a flashlight directly on an object to project its image onto a parallel screen. Will the object and the image be similar? Explain your reasoning.

51. MODELING WITH MATHEMATICS During a total eclipse of the Sun, the moon is directly in line with the Sun and blocks the Sun's rays. The distance DA between Earth and the Sun is $93,000,000$ miles, the distance $D E$ between Earth and the moon is 240,000 miles, and the radius $A B$ of the Sun is 432,500 miles. Use the diagram and the given measurements to estimate the radius $E C$ of the moon.

52. PROVING A THEOREM Prove the Perimeters of Similar Polygons Theorem (Theorem 8.1) for similar rectangles. Include a diagram in your proof.
53. PROVING A THEOREM Prove the Areas of Similar Polygons Theorem (Theorem 8.2) for similar rectangles. Include a diagram in your proof.
54. THOUGHT PROVOKING The postulates and theorems in this book represent Euclidean geometry. In spherical geometry, all points are points on the surface of a sphere. A line is a circle on the sphere whose diameter is equal to the diameter of the sphere. A plane is the surface of the sphere. In spherical geometry, is it possible that two triangles are similar but not congruent? Explain your reasoning.
55. CRITICAL THINKING In the diagram, $P Q R S$ is a square, and PLMS $\sim L M R Q$. Find the exact value of x. This value is called the golden ratio. Golden rectangles have their length and width in this ratio. Show that the similar rectangles in the diagram are golden rectangles.

56. MATHEMATICAL CONNECTIONS The equations of the lines shown are $y=\frac{4}{3} x+4$ and $y=\frac{4}{3} x-8$. Show that $\triangle A O B \sim \triangle C O D$.

Find the value of \boldsymbol{x}. (Section 5.1)
57.

58.

59.

60.

