Proving Iriangle Congruence by ASA and AAS

TeXAS Essential
Knowledge and Skills
G.5.A
G.6.B

MAKING

MATHEMATICAL ARGUMENTS

To be proficient in math, you need to recognize and use counterexamples.

Essential Question
What information is sufficient to determine
whether two triangles are congruent?

EXPLORATION 1 Determining Whether SSA Is Sufficient

Work with a partner.
a. Use dynamic geometry software to construct $\triangle A B C$. Construct the triangle so that vertex B is at the origin, $\overline{A B}$ has a length of 3 units, and $\overline{B C}$ has a length of 2 units.
b. Construct a circle with a radius of 2 units centered at the origin. Locate point D where the circle intersects $\overline{A C}$. Draw $\overline{B D}$.

Sample

Points
A(0, 3)
$B(0,0)$
$C(2,0)$
$D(0.77,1.85)$
Segments
$A B=3$
$A C=3.61$
$B C=2$
$A D=1.38$
Angle
$m \angle A=33.69^{\circ}$
c. $\triangle A B C$ and $\triangle A B D$ have two congruent sides and a nonincluded congruent angle. Name them.
d. Is $\triangle A B C \cong \triangle A B D$? Explain your reasoning.
e. Is SSA sufficient to determine whether two triangles are congruent? Explain your reasoning.

EXPLORATION 2 Determining Valid Congruence Theorems

Work with a partner. Use dynamic geometry software to determine which of the following are valid triangle congruence theorems. For those that are not valid, write a counterexample. Explain your reasoning.

Possible Congruence Theorem	Valid or not valid?
SSS	
SSA	
SAS	
AAS	
ASA	
AAA	

Communicate Your Answer

3. What information is sufficient to determine whether two triangles are congruent?
4. Is it possible to show that two triangles are congruent using more than one congruence theorem? If so, give an example.

Core Vocabulary

Previous

congruent figures
rigid motion

Use the ASA and AAS Congruence Theorems.

Using the ASA and AAS Congruence Theorems

G) Theorem

Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.
If $\angle A \cong \angle D, \overline{A C} \cong \overline{D F}$, and $\angle C \cong \angle F$, then $\triangle A B C \cong \triangle D E F$.

Proof p. 274

PROOF Angle-Side-Angle (ASA) Congruence Theorem

Given $\angle A \cong \angle D, \overline{A C} \cong \overline{D F}, \angle C \cong \angle F$
Prove $\triangle A B C \cong \triangle D E F$

First, translate $\triangle A B C$ so that point A maps to point D, as shown below.

This translation maps $\triangle A B C$ to $\triangle D B^{\prime} C^{\prime}$. Next, rotate $\triangle D B^{\prime} C^{\prime}$ counterclockwise through $\angle C^{\prime} D F$ so that the image of $\overrightarrow{D C^{\prime}}$ coincides with $\overrightarrow{D F}$, as shown below.

Because $\overline{D C^{\prime}} \cong \overline{D F}$, the rotation maps point C^{\prime} to point F. So, this rotation maps $\triangle D B^{\prime} C^{\prime}$ to $\triangle D B^{\prime \prime} F$. Now, reflect $\triangle D B^{\prime \prime} F$ in the line through points D and F, as shown below.

Because points D and F lie on $\overleftrightarrow{D F}$, this reflection maps them onto themselves. Because a reflection preserves angle measure and $\angle B^{\prime \prime} D F \cong \angle E D F$, the reflection maps $\overrightarrow{D B^{\prime \prime}}$ to $\overrightarrow{D E}$. Similarly, because $\angle B^{\prime \prime} F D \cong \angle E F D$, the reflection maps $\overrightarrow{F B^{\prime \prime}}$ to $\overrightarrow{F E}$. The image of $B^{\prime \prime}$ lies on $\overrightarrow{D E}$ and $\overrightarrow{F E}$. Because $\overrightarrow{D E}$ and $\overrightarrow{F E}$ only have point E in common, the image of $B^{\prime \prime}$ must be E. So, this reflection maps $\triangle D B^{\prime \prime} F$ to $\triangle D E F$.

Because you can map $\triangle A B C$ to $\triangle D E F$ using a composition of rigid motions, $\triangle A B C \cong \triangle D E F$.

G Theorem

Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D, \angle C \cong \angle F$, and $\overline{B C} \cong \overline{E F}$, then
$\triangle A B C \cong \triangle D E F$.

Proof p. 275

PROOF Angle-Angle-Side (AAS) Congruence Theorem

Given $\angle A \cong \angle D$,

$$
\begin{aligned}
& \angle C \cong \angle F, \\
& \overline{B C} \cong \overline{E F}
\end{aligned}
$$

Prove $\triangle A B C \cong \triangle D E F$

You are given $\angle A \cong \angle D$ and $\angle C \cong \angle F$. By the Third Angles Theorem (Theorem 5.4), $\angle B \cong \angle E$. You are given $\overline{B C} \cong \overline{E F}$. So, two pairs of angles and their included sides are congruent. By the ASA Congruence Theorem, $\triangle A B C \cong \triangle D E F$.

EXAMPLE 1 Identifying Congruent Triangles

Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.
a.

b.

c.

COMMON ERROR

You need at least one pair of congruent corresponding sides to prove two triangles are congruent.

SOLUTION

a. The vertical angles are congruent, so two pairs of angles and a pair of non-included sides are congruent. The triangles are congruent by the AAS Congruence Theorem.
b. There is not enough information to prove the triangles are congruent, because no sides are known to be congruent.
c. Two pairs of angles and their included sides are congruent. The triangles are congruent by the ASA Congruence Theorem.

Monitoring Progress

 Help in English and Spanish at BigldeasMath.com1. Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.

CONSTRUCTION Copying a Triangle Using ASA

Construct a triangle that is congruent to $\triangle A B C$ using the ASA Congruence Theorem. Use a compass and straightedge.

SOLUTION

Construct a side Construct $\overline{D E}$ so that it is congruent to $\overline{A B}$.

Step 2

Construct an angle Construct $\angle D$ with vertex D and side $\overrightarrow{D E}$ so that it is congruent to $\angle A$.

Step 3

Construct an angle
Construct $\angle E$ with vertex E and side $\overrightarrow{E D}$ so that it is congruent to $\angle B$.

Step 4

Label a point
Label the intersection of the sides of $\angle D$ and $\angle E$ that you constructed in Steps 2 and 3 as F. By the ASA Congruence Theorem, $\triangle A B C \cong \triangle D E F$.

EXAMPLE 2 Using the ASA Congruence Theorem

Write a proof.
Given $\overline{A D} \| \overline{E C}, \overline{B D} \cong \overline{B C}$
Prove $\triangle A B D \cong \triangle E B C$

SOLUTION

STATEMENTS

1. $\overline{A D} \| \overline{E C}$

A 2. $\angle D \cong \angle C$

S 3. $\overline{B D} \cong \overline{B C}$
A 4. $\angle A B D \cong \angle E B C$
5. $\triangle A B D \cong \triangle E B C$

REASONS

1. Given
2. Alternate Interior Angles Theorem (Thm. 3.2)
3. Given
4. Vertical Angles Congruence Theorem (Thm 2.6)
5. ASA Congruence Theorem

Monitoring Progress Help in English and Spanish at BigldeasMath.com

2. In the diagram, $\overline{A B} \perp \overline{A D}, \overline{D E} \perp \overline{A D}$, and $\overline{A C} \cong \overline{D C}$. Prove $\triangle A B C \cong \triangle D E C$.

EXAMPLE 3 Using the AAS Congruence Theorem

Write a proof.
Given $\overline{H F} \| \overline{G K}, \angle F$ and $\angle K$ are right angles.
Prove $\triangle H F G \cong \triangle G K H$

SOLUTION

STATEMENTS	REASONS	
1. $\overline{H F} \\| \overline{G K}$	1. Given	

A 2. $\angle G H F \cong \angle H G K$
3. $\angle F$ and $\angle K$ are right angles.

A 4. $\angle F \cong \angle K$

S 5. $\overline{H G} \cong \overline{G H}$
6. $\triangle H F G \cong \angle G K H$

1. Given
2. Alternate Interior Angles Theorem (Theorem 3.2)
3. Given
4. Right Angles Congruence Theorem (Theorem 2.3)
5. Reflexive Property of Congruence (Theorem 2.1)
6. AAS Congruence Theorem

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
3. In the diagram, $\angle S \cong \angle U$ and $\overline{R S} \cong \overline{V U}$. Prove $\triangle R S T \cong \triangle V U T$.

Concept Summary

Triangle Congruence Theorems

You have learned five methods for proving that triangles are congruent.

SAS	SSS	HL (right © only)	ASA	AAS
Two sides and the included angle are congruent.	All three sides are congruent.	The hypotenuse and one of the legs are congruent.	Two angles and the included side are congruent.	Two angles and a non-included side are congruent.

In the Exercises, you will prove three additional theorems about the congruence of right triangles:
Hypotenuse-Angle, Leg-Leg, and Angle-Leg.

-Vocabulary and Core Concept Check

1. WRITING How are the AAS Congruence Theorem (Theorem 5.11) and the ASA Congruence Theorem (Theorem 5.10) similar? How are they different?
2. WRITING You know that a pair of triangles has two pairs of congruent corresponding angles. What other information do you need to show that the triangles are congruent?

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, decide whether enough information is given to prove that the triangles are congruent. If so, state the theorem you would use. (See Example 1.)
3. $\triangle A B C, \triangle Q R S$

4. $\triangle A B C, \triangle D B C$

5. $\triangle X Y Z, \triangle J K L$
6. $\triangle R S V, \triangle U T V$

In Exercises 7 and 8, state the third congruence statement that is needed to prove that $\triangle F G H \cong \triangle L M N$ using the given theorem.

7. Given $\overline{G H} \cong \overline{M N}, \angle G \cong \angle M$, \qquad \cong \qquad
Use the AAS Congruence Theorem (Thm. 5.11).
8. Given $\overline{F G} \cong \overline{L M}, \angle G \cong \angle M$, \qquad
\qquad
Use the ASA Congruence Theorem (Thm. 5.10).

In Exercises 9-12, decide whether you can use the given information to prove that $\triangle A B C \cong \triangle D E F$. Explain your reasoning.
9. $\angle A \cong \angle D, \angle C \cong \angle F, \overline{A C} \cong \overline{D F}$
10. $\angle C \cong \angle F, \overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$
11. $\angle B \cong \angle E, \angle C \cong \angle F, \overline{A C} \cong \overline{D E}$
12. $\angle A \cong \angle D, \angle B \cong \angle E, \overline{B C} \cong \overline{E F}$

CONSTRUCTION In Exercises 13 and 14, construct a triangle that is congruent to the given triangle using the ASA Congruence Theorem (Theorem 5.10). Use a compass and straightedge.
13.

14.

ERROR ANALYSIS In Exercises 15 and 16, describe and correct the error.
15.

16.

$\triangle Q R S \cong \triangle V W X$ by the AAS Congruence Theorem.

PROOF In Exercises 17 and 18, prove that the triangles are congruent using the ASA Congruence Theorem (Theorem 5.10). (See Example 2.)
17. Given M is the midpoint of $\overline{N L}$.

$$
\overline{N L} \perp \overline{N Q}, \overline{N L} \perp \overline{M P}, \overline{Q M} \| \overline{P L}
$$

Prove $\triangle N Q M \cong \triangle M P L$

18. Given $\overline{A J} \cong \overline{K C}, \angle B J K \cong \angle B K J, \angle A \cong \angle C$

Prove $\triangle A B K \cong \triangle C B J$

PROOF In Exercises 19 and 20, prove that the triangles are congruent using the AAS Congruence Theorem
(Theorem 5.11). (See Example 3.)
19. Given $\overline{V W} \cong \overline{U W}, \angle X \cong \angle Z$

Prove $\triangle X W V \cong \triangle Z W U$

20. Given $\angle N K M \cong \angle L M K, \angle L \cong \angle N$

Prove $\triangle N M K \cong \triangle L K M$

PROOF In Exercises 21-23, write a paragraph proof for the theorem about right triangles.
21. Hypotenuse-Angle (HA) Congruence Theorem If an angle and the hypotenuse of a right triangle are congruent to an angle and the hypotenuse of a second right triangle, then the triangles are congruent.
22. Leg-Leg (LL) Congruence Theorem If the legs of a right triangle are congruent to the legs of a second right triangle, then the triangles are congruent.
23. Angle-Leg (AL) Congruence Theorem If an angle and a leg of a right triangle are congruent to an angle and a leg of a second right triangle, then the triangles are congruent.
24. REASONING What additional information do you need to prove $\triangle J K L \cong \triangle M N L$ by the ASA Congruence Theorem (Theorem 5.10)?
(A) $\overline{K M} \cong \overline{K J}$
(B) $\overline{K H} \cong \overline{N H}$
(C) $\angle M \cong \angle J$
(D) $\angle L K J \cong \angle L N M$

25. MATHEMATICAL CONNECTIONS This toy contains $\triangle A B C$ and $\triangle D B C$. Can you conclude that $\triangle A B C \cong \triangle D B C$ from the given angle measures? Explain.

$$
\begin{aligned}
& m \angle A B C=(8 x-32)^{\circ} \\
& m \angle D B C=(4 y-24)^{\circ} \\
& m \angle B C A=(5 x+10)^{\circ} \\
& m \angle B C D=(3 y+2)^{\circ} \\
& m \angle C A B=(2 x-8)^{\circ} \\
& m \angle C D B=(y-6)^{\circ}
\end{aligned}
$$

26. REASONING Which of the following congruence statements are true? Select all that apply.
(A) $\overline{T U} \cong \overline{U V}$
(B) $\triangle S T V \cong \triangle X V W$
(C) $\triangle T V S \cong \triangle V W U$
(D) $\triangle V S T \cong \triangle V U W$

27. PROVING A THEOREM Prove the Converse of the Base Angles Theorem (Theorem 5.7). (Hint: Draw an auxiliary line inside the triangle.)
28. MAKING AN ARGUMENT Your friend claims to be able to rewrite any proof that uses the AAS Congruence Theorem (Thm. 5.11) as a proof that uses the ASA Congruence Theorem (Thm. 5.10). Is this possible? Explain your reasoning.
29. MODELING WITH MATHEMATICS When a light ray from an object meets a mirror, it is reflected back to your eye. For example, in the diagram, a light ray from point C is reflected at point D and travels back to point A. The law of reflection states that the angle of incidence, $\angle C D B$, is congruent to the angle of reflection, $\angle A D B$.
a. Prove that $\triangle A B D$ is congruent to $\triangle C B D$.
Given $\angle C D B \cong \angle A D B$, $\overline{D B} \perp \overline{A C}$

Prove $\triangle A B D \cong \triangle C B D$
b. Verify that $\triangle A C D$ is isosceles.
c. Does moving away from the mirror have any effect on the amount of his or her reflection a person sees? Explain.

30. HOW DO YOU SEE IT? Name as many pairs of congruent triangles as you can from the diagram. Explain how you know that each pair of triangles is congruent.

31. CONSTRUCTION Construct a triangle. Show that there is no AAA congruence rule by constructing a second triangle that has the same angle measures but is not congruent.
32. THOUGHT PROVOKING Graph theory is a branch of mathematics that studies vertices and the way they are connected. In graph theory, two polygons are isomorphic if there is a one-to-one mapping from one polygon's vertices to the other polygon's vertices that preserves adjacent vertices. In graph theory, are any two triangles isomorphic? Explain your reasoning.
33. MATHEMATICAL CONNECTIONS Six statements are given about $\triangle T U V$ and $\triangle X Y Z$.
$\begin{array}{lll}\overline{T U} \cong \overline{X Y} & \overline{U V} \cong \overline{Y Z} & \overline{T V} \cong \overline{X Z} \\ \angle T \cong \angle X & \angle U \cong \angle Y & \angle V \cong \angle Z\end{array}$

a. List all combinations of three given statements that would provide enough information to prove that $\triangle T U V$ is congruent to $\triangle X Y Z$.
b. You choose three statements at random. What is the probability that the statements you choose provide enough information to prove that the triangles are congruent?

Maintaining Mathematical Proficiency

Find the coordinates of the midpoint of the line segment with the given endpoints. (Section 1.3)
34. $C(1,0)$ and $D(5,4)$
35. $J(-2,3)$ and $K(4,-1)$
36. $R(-5,-7)$ and $S(2,-4)$

Use a compass and straightedge to copy the angle. (Section 1.5)
37.

38.

