5.5 Proving Triangle Congruence by SSS

TEXAS EsSENTIAL
Knowledge and Skills
G.5.A
G.6.B

SELECTING TOOLS

To be proficient in math, you need to use technology to help visualize the results of varying assumptions, explore consequences, and compare predictions with data.

Essential Question what can you conclude about two triangles when you know the corresponding sides are congruent?

EXPLORATION 1 Drawing Triangles

Work with a partner. Use dynamic geometry software.
a. Construct circles with radii of 2 units and 3 units centered at the origin. Label the origin A. Then draw $\overline{B C}$ of length 4 units.
b. Move $\overline{B C}$ so that B is on the smaller circle and C is on the larger circle. Then draw $\triangle A B C$.
c. Explain why the side lengths of $\triangle A B C$ are 2,3 , and 4 units.
d. Find $m \angle A, m \angle B$, and $m \angle C$.
e. Repeat parts (b) and (d) several times, moving $\overline{B C}$ to different locations. Keep track of your results by copying and completing the table below. Write a conjecture about your findings.

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{A} \boldsymbol{B}$	$\boldsymbol{A C}$	$\boldsymbol{B C}$	$\boldsymbol{m} \angle \boldsymbol{A}$	$\boldsymbol{m} \angle \boldsymbol{B}$	$\boldsymbol{m} \angle \boldsymbol{C}$
1.	$(0,0)$			2	3	4			
2.	$(0,0)$			2	3	4			
3.	$(0,0)$			2	3	4			
4.	$(0,0)$			2	3	4			
5.	$(0,0)$			2	3	4			

Communicate Your Answer

2. What can you conclude about two triangles when you know the corresponding sides are congruent?
3. How would you prove your conjecture in Exploration 1(e)?

Core Vocabulary

legs, p. 268
hypotenuse, p. 268

Previous

congruent figures
rigid motion

What You Will Learn

Use the Side-Side-Side (SSS) Congruence Theorem.
Use the Hypotenuse-Leg (HL) Congruence Theorem.

Using the Side-Side-Side Congruence Theorem

Theorem

Theorem 5.8 Side-Side-Side (SSS) Congruence Theorem

If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.
If $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{A C} \cong \overline{D F}$, then $\triangle A B C \cong \triangle D E F$.

PROOF Side-Side-Side (SSS) Congruence Theorem

Given $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}$
Prove $\triangle A B C \cong \triangle D E F$

First, translate $\triangle A B C$ so that point A maps to point D, as shown below.

This translation maps $\triangle A B C$ to $\triangle D B^{\prime} C^{\prime}$. Next, rotate $\triangle D B^{\prime} C^{\prime}$ counterclockwise through $\angle C^{\prime} D F$ so that the image of $\overrightarrow{D C^{\prime}}$ coincides with $\overrightarrow{D F}$, as shown below.

Because $\overline{D C^{\prime}} \cong \overline{D F}$, the rotation maps point C^{\prime} to point F. So, this rotation maps $\triangle D B^{\prime} C^{\prime}$ to $\triangle D B^{\prime \prime} F$. Draw an auxiliary line through points E and $B^{\prime \prime}$. This line creates $\angle 1, \angle 2, \angle 3$, and $\angle 4$, as shown at the left.

Because $\overline{D E} \cong \overline{D B^{\prime \prime}}, \triangle D E B^{\prime \prime}$ is an isosceles triangle. Because $\overline{F E} \cong \overline{F B^{\prime \prime}}, \triangle F E B^{\prime \prime}$ is an isosceles triangle. By the Base Angles Theorem (Thm. 5.6), $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$. By the definition of congruence, $m \angle 1=m \angle 3$ and $m \angle 2=m \angle 4$. By construction, $m \angle D E F=m \angle 1+m \angle 2$ and $m \angle D B^{\prime \prime} F=m \angle 3+m \angle 4$. You can now use the Substitution Property of Equality to show $m \angle D E F=m \angle D B^{\prime \prime} F$.

$$
\begin{aligned}
m \angle D E F & =m \angle 1+m \angle 2 & & \text { Angle Addition Postulate (Postulate 1.4) } \\
& =m \angle 3+m \angle 4 & & \text { Substitute } m \angle 3 \text { for } m \angle 1 \text { and } m \angle 4 \text { for } m \angle 2 . \\
& =m \angle D B^{\prime \prime} F & & \text { Angle Addition Postulate (Postulate 1.4) }
\end{aligned}
$$

By the definition of congruence, $\angle D E F \cong \angle D B^{\prime \prime} F$. So, two pairs of sides and their included angles are congruent. By the SAS Congruence Theorem (Thm. 5.5), $\triangle D B^{\prime \prime} F \cong \triangle D E F$. So, a composition of rigid motions maps $\triangle D B^{\prime \prime} F$ to $\triangle D E F$. Because a composition of rigid motions maps $\triangle A B C$ to $\triangle D B^{\prime \prime} F$ and a composition of rigid motions maps $\triangle D B^{\prime \prime} F$ to $\triangle D E F$, a composition of rigid motions maps $\triangle A B C$ to $\triangle D E F$. So, $\triangle A B C \cong \triangle D E F$.

EXAMPLE 1 Using the SSS Congruence Theorem

Write a proof.
Given $\overline{K L} \cong \overline{N L}, \overline{K M} \cong \overline{N M}$
Prove $\triangle K L M \cong \triangle N L M$

SOLUTION

STATEMENTS	REASONS
S 1. $\overline{K L} \cong \overline{N L}$	1. Given
S 2. $\overline{K M} \cong \overline{N M}$	2. Given
S 3. $\overline{L M} \cong \overline{L M}$	3. Reflexive Property of Congruence (Thm. 2.1)
4. $\triangle K L M \cong \triangle N L M$	4. SSS Congruence Theorem

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Decide whether the congruence statement is true. Explain your reasoning.

1. $\triangle D F G \cong \triangle H J K$

2. $\triangle A C B \cong \triangle C A D$

3. $\triangle Q P T \cong \triangle R S T$

EXAMPLE 2 Solving a Real-Life Problem

Explain why the bench with the diagonal support is stable, while the one without the support can collapse.

SOLUTION

The bench with the diagonal support forms triangles with fixed side lengths. By the SSS Congruence Theorem, these triangles cannot change shape, so the bench is stable. The bench without the diagonal support is not stable because there are many possible quadrilaterals with the given side lengths.

Monitoring Progress
 Help in English and Spanish at BigldeasMath.com

Determine whether the figure is stable. Explain your reasoning.
4.

5.

6.

CONSTRUCTION Copying a Triangle Using SSS

Construct a triangle that is congruent to $\triangle A B C$ using the SSS Congruence Theorem. Use a compass and straightedge.

SOLUTION

Step 1

Construct a side Construct $\overline{D E}$ so that it is congruent to $\overline{A B}$.

Step 2

Draw an arc Open your compass to the length $A C$. Use this length to draw an arc with center D.

Step 3

Draw an arc
Draw an arc with radius $B C$ and center E that intersects the arc from Step 2. Label the intersection point F.

Step 4

Draw a triangle Draw $\triangle D E F$. By the SSS Congruence Theorem, $\triangle A B C \cong \triangle D E F$.

Using the Hypotenuse-Leg Congruence Theorem

You know that SAS and SSS are valid methods for proving that triangles are congruent. What about SSA?
In general, SSA is not a valid method for proving that triangles are congruent. In the triangles below, two pairs of sides and a pair of angles not included between them are congruent, but the triangles are not congruent.

While SSA is not valid in general, there is a special case for right triangles.
In a right triangle, the sides adjacent to the right angle are called the legs. The side opposite the right angle is called the hypotenuse of the right triangle.

(5) Theorem

Theorem 5.9 Hypotenuse-Leg (HL) Congruence Theorem

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.
If $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F}$, and $m \angle C=m \angle F=90^{\circ}$, then $\triangle A B C \cong \triangle D E F$.

Proof Ex. 38, p. 474; BigIdeasMath.com

EXAMPLE 3 Using the Hypotenuse-Leg Congruence Theorem

Write a proof.
Given $\overline{W Y} \cong \overline{X Z}, \overline{W Z} \perp \overline{Z Y}, \overline{X Y} \perp \overline{Z Y}$
Prove $\triangle W Y Z \cong \triangle X Z Y$

SOLUTION

Redraw the triangles so they are side by side with corresponding parts in the same position. Mark the given information in the diagram.

STATEMENTS

REASONS

H 1. $\overline{W Y} \cong \overline{X Z}$
2. $\overline{W Z} \perp \overline{Z Y}, \overline{X Y} \perp \overline{Z Y}$
3. $\angle Z$ and $\angle Y$ are right angles.
4. $\triangle W Y Z$ and $\triangle X Z Y$ are right triangles.

L 5. $\overline{Z Y} \cong \overline{Y Z}$
6. $\triangle W Y Z \cong \triangle X Z Y$

1. Given
2. Given
3. Definition of \perp lines
4. Definition of a right triangle
5. Reflexive Property of Congruence (Thm. 2.1)
6. HL Congruence Theorem

EXAMPLE 4 Using the Hypotenuse-Leg Congruence Theorem

The television antenna is perpendicular to the plane containing points B, C, D, and E. Each of the cables running from the top of the antenna to B, C, and D has the same length. Prove that $\triangle A E B, \triangle A E C$, and $\triangle A E D$ are congruent.
Given $\overline{A E} \perp \overline{E B}, \overline{A E} \perp \overline{E C}, \overline{A E} \perp \overline{E D}, \overline{A B} \cong \overline{A C} \cong \overline{A D}$
Prove $\triangle A E B \cong \triangle A E C \cong \triangle A E D$

SOLUTION

You are given that $\overline{A E} \perp \overline{E B}$ and $\overline{A E} \perp \overline{E C}$. So, $\angle A E B$ and $\angle A E C$ are right angles by the definition of perpendicular lines. By definition, $\triangle A E B$ and $\triangle A E C$ are right triangles. You are given that the hypotenuses of these two triangles, $\overline{A B}$ and $\overline{A C}$, are congruent. Also, $\overline{A E}$ is a leg for both triangles, and $\overline{A E} \cong \overline{A E}$ by the Reflexive Property of Congruence (Thm. 2.1). So, by the Hypotenuse-Leg Congruence Theorem, $\triangle A E B \cong \triangle A E C$. You can use similar reasoning to prove that $\triangle A E C \cong \triangle A E D$.

So, by the Transitive Property of Triangle Congruence (Thm. 5.3), $\triangle A E B \cong \triangle A E C \cong \triangle A E D$.

Monitoring Progress

 Help in English and Spanish at BigldeasMath.com
Use the diagram.

7. Redraw $\triangle A B C$ and $\triangle D C B$ side by side with corresponding parts in the same position.
8. Use the information in the diagram to prove that $\triangle A B C \cong \triangle D C B$.

- Vocabulary and Core Concept Check

1. COMPLETE THE SENTENCE The side opposite the right angle is called the \qquad of the right triangle.
2. WHICH ONE DOESN'T BELONG? Which triangle's legs do not belong with the other three? Explain your reasoning.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, decide whether enough information is given to prove that the triangles are congruent using the SSS Congruence Theorem (Theorem 5.8). Explain.
3. $\triangle A B C, \triangle D B E$

4. $\triangle P Q S, \triangle R Q S$

In Exercises 5 and 6, decide whether enough information is given to prove that the triangles are congruent using the HL Congruence Theorem (Theorem 5.9). Explain.
5. $\triangle A B C, \triangle F E D$

6. $\triangle P Q T, \triangle S R T$

In Exercises 7-10, decide whether the congruence statement is true. Explain your reasoning.
(See Example 1.)
7. $\triangle R S T \cong \triangle T Q P$
8. $\triangle A B D \cong \triangle C D B$

9. $\triangle D E F \cong \triangle D G F$

10. $\triangle J K L \cong \triangle L J M$

In Exercises 11 and 12, determine whether the figure is stable. Explain your reasoning. (See Example 2.)
11.

12.

In Exercises 13 and 14, redraw the triangles so they are side by side with corresponding parts in the same position. Then write a proof. (See Example 3.)
13. Given $\begin{aligned} \overline{A C} & \cong \overline{B D}, \\ \overline{A B} & \perp \overline{A D}, \\ \overline{C D} & \perp \overline{A D}\end{aligned}$

Prove $\triangle B A D \cong \triangle C D A$

14. Given G is the midpoint of $\overline{E H}, \overline{F G} \cong \overline{G I}$, $\angle E$ and $\angle H$ are right angles.

Prove $\triangle E F G \cong \triangle H I G$

In Exercises 15 and 16, write a proof.

15. Given
$\overline{L M} \cong \overline{J K}, \overline{M J} \cong \overline{K L}$
Prove $\triangle L M J \cong \triangle J K L$

16. Given $\overline{W X} \cong \overline{V Z}, \overline{W Y} \cong \overline{V Y}, \overline{Y Z} \cong \overline{Y X}$

Prove $\triangle V W X \cong \triangle W V Z$

CONSTRUCTION In Exercises 17 and 18, construct a triangle that is congruent to $\triangle Q R S$ using the SSS Congruence Theorem (Theorem 5.8).
17.

18.

19. ERROR ANALYSIS Describe and correct the error in identifying congruent triangles.

$\triangle T U V \cong \triangle X Y Z$ by the SSS Congruence Theorem.
20. ERROR ANALYSIS Describe and correct the error in determining the value of x that makes the triangles congruent.

21. MAKING AN ARGUMENT Your friend claims that in order to use the SSS Congruence Theorem (Theorem 5.8) to prove that two triangles are congruent, both triangles must be equilateral triangles. Is your friend correct? Explain your reasoning.
22. MODELING WITH MATHEMATICS The distances between consecutive bases on a softball field are the same. The distance from home plate to second base is the same as the distance from first base to third base. The angles created at each base are 90°. Prove $\triangle H F S \cong \triangle F S T \cong \triangle S T H$. (See Example 4.)

23. REASONING To support a tree, you attach wires from the trunk of the tree to stakes in the ground, as shown in the diagram.

a. What additional information do you need to use the HL Congruence Theorem (Theorem 5.9) to prove that $\triangle J K L \cong \triangle M K L$?
b. Suppose K is the midpoint of $J M$. Name a theorem you could use to prove that $\triangle J K L \cong \triangle M K L$. Explain your reasoning.
24. REASONING Use the photo of the Navajo rug, where $\overline{B C} \cong \overline{D E}$ and $\overline{A C} \cong \overline{C E}$.

a. What additional information do you need to use the SSS Congruence Theorem (Theorem 5.8) to prove that $\triangle A B C \cong \triangle C D E$?
b. What additional information do you need to use the HL Congruence Theorem (Theorem 5.9) to prove that $\triangle A B C \cong \triangle C D E$?

In Exercises 25-28, use the given coordinates to determine whether $\triangle A B C \cong \triangle D E F$.
25. $A(-2,-2), B(4,-2), C(4,6), D(5,7), E(5,1), F(13,1)$
26. $A(-2,1), B(3,-3), C(7,5), D(3,6), E(8,2), F(10,11)$
27. $A(0,0), B(6,5), C(9,0), D(0,-1), E(6,-6), F(9,-1)$
28. $A(-5,7), B(-5,2), C(0,2), D(0,6), E(0,1), F(4,1)$
29. CRITICAL THINKING You notice two triangles in the tile floor of a hotel lobby. You want to determine whether the triangles are congruent, but you only have a piece of string. Can you determine whether the triangles are congruent? Explain.
30. HOW DO YOU SEE IT? There are several theorems you can use to show that the triangles in the "square" pattern are congruent. Name two of them.

31. MAKING AN ARGUMENT

Your cousin says that $\triangle J K L$ is congruent to $\triangle L M J$ by the SSS Congruence Theorem (Thm. 5.8). Your friend says that $\triangle J K L$ is congruent to $\triangle L M J$
 by the HL Congruence Theorem (Thm. 5.9). Who is correct?
Explain your reasoning.
32. WRITING Describe the relationship between your conjecture in Exploration 1(e) on page 265 and the Side-Side-Side (SSS) Congruence Theorem (Theorem 5.8).
33. PROVING A THEOREM Prove the Base Angles Theorem (Theorem 5.6) using the Side-Side-Side (SSS) Congruence Theorem (Theorem 5.8).

Maintaining Mathematical Proficiency

Use the congruent triangles. (Section 5.2)
39. Name the segment in $\triangle D E F$ that is congruent to $\overline{A C}$.
40. Name the segment in $\triangle A B C$ that is congruent to $\overline{E F}$.
41. Name the angle in $\triangle D E F$ that is congruent to $\angle B$.
42. Name the angle in $\triangle A B C$ that is congruent to $\angle F$.
34. THOUGHT PROVOKING The postulates and theorems in this book represent Euclidean geometry. In spherical geometry, all points are points on the surface of a sphere. A line is a circle on the sphere whose diameter is equal to the diameter of the sphere. In spherical geometry, do you think that two triangles are congruent if their corresponding sides are congruent? Justify your answer.

USING TOOLS In Exercises 35 and 36, use the given information to sketch $\triangle L M N$ and $\triangle S T U$. Mark the triangles with the given information.
35. $\overline{L M} \perp \overline{M N}, \overline{S T} \perp \overline{T U}, \overline{L M} \cong \overline{N M} \cong \overline{U T} \cong \overline{S T}$
36. $\overline{L M} \perp \overline{M N}, \overline{S T} \perp \overline{T U}, \overline{L M} \cong \overline{S T}, \overline{L N} \cong \overline{S U}$
37. CRITICAL THINKING The diagram shows the light created by two spotlights. Both spotlights are the same distance from the stage.

a. Show that $\triangle A B D \cong \triangle C B D$. State which theorem or postulate you used and explain your reasoning.
b. Are all four right triangles shown in the diagram congruent? Explain your reasoning.
38. MATHEMATICAL CONNECTIONS Find all values of x that make the triangles congruent. Explain.

Reviewing what you learned in previous grades and lessons

