5.3 Proving Triangle Congruence by SAS

TEXAS ESSENTIAL
Knowledge and Skills
G.5.A
G.6.B

SELECTING TOOLS

To be proficient in math, you need to use technology to help visualize the results of varying assumptions, explore consequences, and compare predictions with data.

Essential Question what can you conclude about two triangles when you know that two pairs of corresponding sides and the corresponding included angles are congruent?

EXPLORATION 1 Drawing Triangles

Work with a partner. Use dynamic geometry software.
a. Construct circles with radii of 2 units and 3 units centered at the origin. Construct a 40° angle with its vertex at the origin. Label the vertex A.
b. Locate the point where one ray of the angle intersects the smaller circle and label this point B. Locate the point where the other ray of the angle intersects the larger circle and label this point C. Then draw $\triangle A B C$.
c. Find $B C, m \angle B$, and $m \angle C$.
d. Repeat parts (a)-(c) several times, redrawing the angle in different positions. Keep track of your results by copying and completing the table below. Write a conjecture about your findings.

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{A} \boldsymbol{B}$	$\boldsymbol{A C}$	$\boldsymbol{B C}$	$\boldsymbol{m} \angle \boldsymbol{A}$	$\boldsymbol{m} \angle \boldsymbol{B}$	$\boldsymbol{m} \angle \boldsymbol{C}$
1.	$(0,0)$			2	3		40°		
2.	$(0,0)$			2	3		40°		
3.	$(0,0)$			2	3		40°		
4.	$(0,0)$			2	3		40°		
5.	$(0,0)$			2	3		40°		

Communicate Your Answer

2. What can you conclude about two triangles when you know that two pairs of corresponding sides and the corresponding included angles are congruent?
3. How would you prove your conjecture in Exploration 1(d)?

Core Vocabulary

Previous

congruent figures
rigid motion

STUDY TIP

The included angle of two sides of a triangle is the angle formed by the two sides.

What You Will Learn

Use the Side-Angle-Side (SAS) Congruence Theorem.
Solve real-life problems.

Using the Side-Angle-Side Congruence Theorem

Theorem

Theorem 5.5 Side-Angle-Side (SAS) Congruence Theorem

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.
If $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D$, and $\overline{A C} \cong \overline{D F}$, then $\triangle A B C \cong \triangle D E F$.

Proof p. 250

PROOF Side-Angle-Side (SAS) Congruence Theorem

Given $\overline{A B} \cong \overline{D E}, \angle A \cong \angle D, \overline{A C} \cong \overline{D F}$
Prove $\triangle A B C \cong \triangle D E F$

First, translate $\triangle A B C$ so that point A maps to point D, as shown below.

This translation maps $\triangle A B C$ to $\triangle D B^{\prime} C^{\prime}$. Next, rotate $\triangle D B^{\prime} C^{\prime}$ counterclockwise through $\angle C^{\prime} D F$ so that the image of $\overrightarrow{D C^{\prime}}$ coincides with $\overrightarrow{D F}$, as shown below.

Because $\overline{D C^{\prime}} \cong \overline{D F}$, the rotation maps point C^{\prime} to point F. So, this rotation maps $\triangle D B^{\prime} C^{\prime}$ to $\triangle D B^{\prime \prime} F$. Now, reflect $\triangle D B^{\prime \prime} F$ in the line through points D and F, as shown below.

Because points D and F lie on $\overleftrightarrow{D F}$, this reflection maps them onto themselves. Because a reflection preserves angle measure and $\angle B^{\prime \prime} D F \cong \angle E D F$, the reflection maps $\overrightarrow{D B^{\prime \prime}}$ to $\overrightarrow{D E}$. Because $\overrightarrow{D B^{\prime \prime}} \cong \overline{D E}$, the reflection maps point $B^{\prime \prime}$ to point E. So, this reflection maps $\triangle D B^{\prime \prime} F$ to $\triangle D E F$.

Because you can map $\triangle A B C$ to $\triangle D E F$ using a composition of rigid motions, $\triangle A B C \cong \triangle D E F$.

EXAMPLE 1 Using the SAS Congruence Theorem

STUDY TIP

Make your proof easier to read by identifying the steps where you show congruent sides (S) and angles (A).

Write a proof.
Given $\overline{B C} \cong \overline{D A}, \overline{B C} \| \overline{A D}$
Prove $\triangle A B C \cong \triangle C D A$

SOLUTION

STATEMENTS	REASONS	
S 1. $\overline{B C} \cong \overline{D A}$	1. Given	
2. $\overline{B C} \\| \overline{A D}$	2. Given	
A 3. $\angle B C A \cong \angle D A C$	3. Alternate Interior Angles Theorem (Thm. 3.2)	
S 4. $\overline{A C} \cong \overline{C A}$	4. Reflexive Property of Congruence (Thm. 2.1)	
5. $\triangle A B C \cong \triangle C D A$	5. SAS Congruence Theorem	

EXAMPLE 2 Using SAS and Properties of Shapes

In the diagram, $\overline{Q S}$ and $\overline{R P}$ pass through the center M of the circle. What can you conclude about $\triangle M R S$ and $\triangle M P Q$?

SOLUTION

Because they are vertical angles, $\angle P M Q \cong \angle R M S$. All points on a circle are the same distance from the center, so $\overline{M P}, \overline{M Q}, \overline{M R}$, and $\overline{M S}$ are all congruent.

So, $\triangle M R S$ and $\triangle M P Q$ are congruent by the SAS Congruence Theorem.

Monitoring Progress

In the diagram, $A B C D$ is a square with four congruent sides and four right angles. R, S, T, and U are the midpoints of the sides of $A B C D$. Also, $\overline{R T} \perp \overline{S U}$ and $\overline{S V} \cong \overline{V U}$.

1. Prove that $\triangle S V R \cong \triangle U V R$.
2. Prove that $\triangle B S R \cong \triangle D U T$.

CONSTRUCTION Copying a Triangle Using SAS

Construct a triangle that is congruent to $\triangle A B C$ using the SAS Congruence Theorem. Use a compass and straightedge.

SOLUTION

Step 1

Construct a side
Construct $\overline{D E}$ so that it is congruent to $\overline{A B}$.

Step 2

Construct an angle Construct $\angle D$ with vertex D and side $\overrightarrow{D E}$ so that it is congruent to $\angle A$.

Step 3

Construct a side Construct $\overline{D F}$ so that it is congruent to $\overline{A C}$.

Step 4

Draw a triangle Draw $\triangle D E F$. By the SAS Congruence Theorem, $\triangle A B C \cong \triangle D E F$.

Solving Real-Life Problems

EXAMPLE 3 Solving a Real-Life Problem

You are making a canvas sign to hang on the triangular portion of the barn wall shown in the picture. You think you can use two identical triangular sheets of canvas. You know that $\overline{R P} \perp \overline{Q S}$ and $\overline{P Q} \cong \overline{P S}$. Use the SAS Congruence Theorem to show that $\triangle P Q R \cong \triangle P S R$.

SOLUTION

You are given that $\overline{P Q} \cong \overline{P S}$. By the Reflexive Property of Congruence (Theorem 2.1), $\overline{R P} \cong \overline{R P}$. By the definition of perpendicular lines, both $\angle R P Q$ and $\angle R P S$ are right angles, so they are congruent. So, two pairs of sides and their included angles are congruent.
$\triangle P Q R$ and $\triangle P S R$ are congruent by the SAS Congruence Theorem.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

3. You are designing the window shown in the photo. You want to make $\triangle D R A$ congruent to $\triangle D R G$. You design the window so that $\overline{D A} \cong \overline{D G}$ and $\angle A D R \cong \angle G D R$. Use the SAS Congruence Theorem to prove $\triangle D R A \cong \triangle D R G$.

-Vocabulary and Core Concept Check

1. WRITING What is an included angle?
2. COMPLETE THE SENTENCE If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then \qquad —.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-8, name the included angle between the pair of sides given.

3. $\overline{J K}$ and $\overline{K L}$
4. $\overline{P K}$ and $\overline{L K}$
5. $\overline{L P}$ and $\overline{L K}$
6. $\overline{J L}$ and $\overline{J K}$
7. $\overline{K L}$ and $\overline{J L}$
8. $\overline{K P}$ and $\overline{P L}$

In Exercises 9-14, decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Theorem (Theorem 5.5). Explain.
9. $\triangle A B D, \triangle C D B$

10. $\triangle L M N, \triangle N Q P$

11. $\triangle Y X Z, \triangle W X Z$
12. $\triangle Q R V, \triangle T S U$

13. $\triangle E F H, \triangle G H F$
14. $\triangle K L M, \triangle M N K$

In Exercises 15-18, write a proof. (See Example 1.)
15. Given $\overline{P Q}$ bisects $\angle S P T, \overline{S P} \cong \overline{T P}$

Prove $\triangle S P Q \cong \triangle T P Q$

16. Given $\overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$

Prove $\triangle A B C \cong \triangle C D A$

17. Given C is the midpoint of $\overline{A E}$ and $\overline{B D}$.

Prove $\triangle A B C \cong \triangle E D C$

18. Given $\overline{P T} \cong \overline{R T}, \overline{Q T} \cong \overline{S T}$

Prove $\triangle P Q T \cong \triangle R S T$

In Exercises 19-22, use the given information to name two triangles that are congruent. Explain your reasoning. (See Example 2.)
19. $\angle S R T \cong \angle U R T$, and R is the center of the circle.

21. RSTUV is a regular pentagon.

20. $A B C D$ is a square with four congruent sides and four congruent angles.

22. $\overline{M K} \perp \overline{M N}, \overline{K L} \perp \overline{N L}$, and M and L are centers of circles.

CONSTRUCTION In Exercises 23 and 24, construct a triangle that is congruent to $\triangle A B C$ using the SAS Congruence Theorem (Theorem 5.5).
23.

24. B

25. ERROR ANALYSIS Describe and correct the error in finding the value of x.

$$
\begin{aligned}
4 x+6 & =3 x+9 \\
x+6 & =9 \\
x & =3
\end{aligned}
$$

26. WRITING Describe the relationship between your conjecture in Exploration 1(d) on page 249 and the Side-Angle-Side (SAS) Congruence Theorem (Thm. 5.5).
27. PROOF The Navajo rug is made of isosceles triangles. You know $\angle B \cong \angle D$. Use the SAS Congruence Theorem (Theorem 5.5) to show that $\triangle A B C \cong \triangle C D E$. (See Example 3.)

28. HOW DO YOU SEE IT?

What additional information do you need to prove that $\triangle A B C \cong \triangle D B C$?

29. MATHEMATICAL CONNECTIONS Prove that $\triangle A B C \cong \triangle D E C$.
Then find the values of x and y.

30. THOUGHT PROVOKING There are six possible subsets of three sides or angles of a triangle: SSS, SAS, SSA, AAA, ASA, and AAS. Which of these correspond to congruence theorems? For those that do not, give a counterexample.
31. MAKING AN ARGUMENT Your friend claims it is possible to construct a triangle congruent to $\triangle A B C$ by first constructing $\overline{A B}$ and $\overline{A C}$, and then copying $\angle C$. Is your friend correct? Explain
 your reasoning.
32. PROVING A THEOREM Prove the Reflections in Intersecting Lines Theorem (Theorem 4.3).

Maintaining Mathematical Proficiency

Classify the triangle by its sides and by measuring its angles. (Section 5.1)
33.

34.

35.

36.

