5.2 Congruent Polygons

TeXAS Essential
KnowLedge and Skills
G.5.A
G.6.C
G.6.D

ANALYZING

MATHEMATICAL RELATIONSHIPS

To be proficient in math, you need to look closely to discern a pattern or structure.

Essential Question Given two congruent triangles, how can you use rigid motions to map one triangle to the other triangle?

EXPLORATION 1 Describing Rigid Motions

Work with a partner. Of the four transformations you studied in Chapter 4, which are rigid motions? Under a rigid motion, why is the image of a triangle always congruent to the original triangle? Explain your reasoning.

Reflection

Rotation

Dilation

EXPLORATION 2 Finding a Composition of Rigid Motions

Work with a partner. Describe a composition of rigid motions that maps $\triangle A B C$ to $\triangle D E F$. Use dynamic geometry software to verify your answer.
a. $\triangle A B C \cong \triangle D E F$

c. $\triangle A B C \cong \triangle D E F$

b. $\triangle A B C \cong \triangle D E F$

d. $\triangle A B C \cong \triangle D E F$

Communicate Your Answer

3. Given two congruent triangles, how can you use rigid motions to map one triangle to the other triangle?
4. The vertices of $\triangle A B C$ are $A(1,1), B(3,2)$, and $C(4,4)$. The vertices of $\triangle D E F$ are $D(2,-1), E(0,0)$, and $F(-1,2)$. Describe a composition of rigid motions that maps $\triangle A B C$ to $\triangle D E F$.

5.2 Lesson

Core Vocabulary

corresponding parts, p. 244
Previous
congruent figures

STUDY TIP

Notice that both of the following statements are true.

1. If two triangles are congruent, then all their corresponding parts are congruent.
2. If all the corresponding parts of two triangles are congruent, then the triangles are congruent.

REASONING

To help you identify corresponding parts, rotate $\triangle T S R$.

What You Will Learn

Identify and use corresponding parts.
Use the Third Angles Theorem.

Identifying and Using Corresponding Parts

Recall that two geometric figures are congruent if and only if a rigid motion or a composition of rigid motions maps one of the figures onto the other. A rigid motion maps each part of a figure to a corresponding part of its image. Because rigid motions preserve length and angle measure, corresponding parts of congruent figures are congruent. In congruent polygons, this means that the corresponding sides and the corresponding angles are congruent.

When $\triangle D E F$ is the image of $\triangle A B C$ after a rigid motion or a composition of rigid motions, you can write congruence statements for the corresponding angles and corresponding sides.

Corresponding angles

$$
\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F
$$

Corresponding sides

$$
\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}, \overline{A C} \cong \overline{D F}
$$

When you write a congruence statement for two polygons, always list the corresponding vertices in the same order. You can write congruence statements in more than one way. Two possible congruence statements for the triangles above are $\triangle A B C \cong \triangle D E F$ or $\triangle B C A \cong \triangle E F D$.

When all the corresponding parts of two triangles are congruent, you can show that the triangles are congruent. Using the triangles above, first translate $\triangle A B C$ so that point A maps to point D. This translation maps $\triangle A B C$ to $\triangle D B^{\prime} C^{\prime}$. Next, rotate $\triangle D B^{\prime} C^{\prime}$ counterclockwise through $\angle C^{\prime} D F$ so that the image of $\overrightarrow{D C^{\prime}}$ coincides with $\overrightarrow{D F}$. Because $\overline{D C^{\prime}} \cong \overline{D F}$, the rotation maps point C^{\prime} to point F. So, this rotation maps $\triangle D B^{\prime} C^{\prime}$ to $\triangle D B^{\prime \prime} F$.
 \Rightarrow

Now, reflect $\triangle D B^{\prime \prime} F$ in the line through points D and F. This reflection maps the sides and angles of $\triangle D B^{\prime \prime} F$ to the corresponding sides and corresponding angles of $\triangle D E F$, so $\triangle A B C \cong \triangle D E F$.

So, to show that two triangles are congruent, it is sufficient to show that their corresponding parts are congruent. In general, this is true for all polygons.

EXAMPLE 1 Identifying Corresponding Parts

Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

SOLUTION

The diagram indicates that $\triangle J K L \cong \triangle T S R$.

$$
\begin{array}{ll}
\text { Corresponding angles } & \angle J \cong \angle T, \angle K \cong \angle S, \angle L \cong \angle R \\
\text { Corresponding sides } & \overline{J K} \cong \overline{T S}, \overline{K L} \cong \overline{S R}, \overline{L J} \cong \overline{R T}
\end{array}
$$

EXAMPLE 2 Using Properties of Congruent Figures

In the diagram, $D E F G \cong S P Q R$.
a. Find the value of x.
b. Find the value of y.

SOLUTION

a. You know that $\overline{F G} \cong \overline{Q R}$.

$$
\begin{aligned}
F G & =Q R \\
12 & =2 x-4 \\
16 & =2 x \\
8 & =x
\end{aligned}
$$

b. You know that $\angle F \cong \angle Q$.

$$
\begin{aligned}
m \angle F & =m \angle Q \\
68^{\circ} & =(6 y+x)^{\circ} \\
68 & =6 y+8 \\
10 & =y
\end{aligned}
$$

EXAMPLE 3 Showing That Figures Are Congruent

You divide the wall into orange and blue sections along $\overline{J K}$. Will the sections of the wall be the same size and shape? Explain.

SOLUTION

From the diagram, $\angle A \cong \angle C$ and $\angle D \cong \angle B$ because all right angles are congruent. Also,
 by the Lines Perpendicular to a Transversal Theorem (Thm. 3.12), $\overline{A B} \| \overline{D C}$. Then $\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$ by the Alternate Interior Angles Theorem (Thm. 3.2). So, all pairs of corresponding angles are congruent. The diagram shows $\overline{A J} \cong \overline{C K}, \overline{K D} \cong \overline{J B}$, and $\overline{D A} \cong \overline{B C}$. By the Reflexive Property of Congruence (Thm. 2.1), $\overline{J K} \cong \overline{K J}$. So, all pairs of corresponding sides are congruent. Because all corresponding parts are congruent, $A J K D \cong C K J B$.

- Yes, the two sections will be the same size and shape.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

In the diagram, $A B G H \cong C D E F$.

1. Identify all pairs of congruent corresponding parts.
2. Find the value of x.

3. In the diagram at the left, show that $\triangle P T S \cong \triangle R T Q$.

G Theorem

STUDY TIP

The properties of congruence that are true for segments and angles are also true for triangles.

Theorem 5.3 Properties of Triangle Congruence

Triangle congruence is reflexive, symmetric, and transitive.
Reflexive For any triangle $\triangle A B C, \triangle A B C \cong \triangle A B C$.
Symmetric If $\triangle A B C \cong \triangle D E F$, then $\triangle D E F \cong \triangle A B C$.
Transitive If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle J K L$, then $\triangle A B C \cong \triangle J K L$.
Proof BigIdeasMath.com

Using the Third Angles Theorem

G Theorem

Theorem 5.4 Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Proof Ex. 19, p. 248

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\angle C \cong \angle F$.

EXAMPLE 4 Using the Third Angles Theorem

Find $m \angle B D C$.

SOLUTION

$\angle A \cong \angle B$ and $\angle A D C \cong \angle B C D$, so by the Third Angles Theorem, $\angle A C D \cong \angle B D C$. By the Triangle Sum Theorem (Theorem 5.1), $m \angle A C D=180^{\circ}-45^{\circ}-30^{\circ}=105^{\circ}$.

So, $m \angle B D C=m \angle A C D=105^{\circ}$ by the definition of congruent angles.

EXAMPLE 5 Proving That Triangles Are Congruent

Use the information in the figure to prove that $\triangle A C D \cong \triangle C A B$.

SOLUTION

Given $\overline{A D} \cong \overline{C B}, \overline{D C} \cong \overline{B A}, \angle A C D \cong \angle C A B, \angle C A D \cong \angle A C B$
Prove $\triangle A C D \cong \triangle C A B$

Plan	a. Use the Reflexive Property of Congruence (Thm. 2.1) to show that $\overline{A C} \cong \overline{C A}$
for	
Proof	b. Use the Third Angles Theorem to show that $\angle B \cong \angle D$.

Plan		
in		
Action	RTATEMENTS	REASONS
1. $\overline{A D} \cong \overline{C B}, \overline{D C} \cong \overline{B A}$	1. Given	

a. 2. $\overline{A C} \cong \overline{C A}$
3. $\angle A C D \cong \angle C A B$, $\angle C A D \cong \angle A C B$
b. 4. $\angle B \cong \angle D$
5. $\triangle A C D \cong \triangle C A B$
2. Reflexive Property of Congruence (Theorem 2.1)
3. Given
4. Third Angles Theorem
5. All corresponding parts are congruent.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Use the diagram.

4. Find $m \angle D C N$.
5. What additional information is needed to conclude that $\triangle N D C \cong \triangle N S R$?

-Vocabulary and Core Concept Check

1. WRITING Based on this lesson, what information do you need to prove that two triangles are congruent? Explain your reasoning.
2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.

Is $\triangle J K L \cong \triangle R S T ? \quad$ Is $\triangle K J L \cong \triangle S R T ?$

Is $\triangle J L K \cong \triangle S T R$?

Is $\triangle L K J \cong \triangle T S R$?

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, identify all pairs of congruent corresponding parts. Then write another congruence statement for the polygons. (See Example 1.)
3. $\triangle A B C \cong \triangle D E F$

4. $G H J K \cong Q R S T$

In Exercises 5-8, $\triangle X Y Z \cong \triangle M N L$. Copy and complete the statement.
5. $m \angle Y=$ \qquad

7. $m \angle Z=$ \qquad
8. $X Y=$ \qquad

In Exercises 9 and 10, find the values of \boldsymbol{x} and \boldsymbol{y}.
(See Example 2.)
9. $A B C D \cong E F G H$

10. $\triangle M N P \cong \triangle T U S$

In Exercises 11 and 12, show that the polygons are congruent. Explain your reasoning. (See Example 3.)
11.

12.

In Exercises 13 and 14, find $m \angle 1$. (See Example 4.)
13.

14.

15. PROOF Triangular postage stamps, like the ones shown, are highly valued by stamp collectors. Prove that $\triangle A E B \cong \triangle C E D$. (See Example 5.)

Given $\overline{A B} \| \overline{D C}, \overline{A B} \cong \overline{D C}, E$ is the midpoint of $\overline{A C}$ and $\overline{B D}$.

Prove $\triangle A E B \cong \triangle C E D$
16. PROOF Use the information in the figure to prove that $\triangle A B G \cong \triangle D C F$.

ERROR ANALYSIS In Exercises 17 and 18, describe and correct the error.
17.

18.

Maintaining Mathematical Proficiency

19. PROVING A THEOREM Prove the Third Angles Theorem (Theorem 5.4) by using the Triangle Sum Theorem (Theorem 5.1).
20. THOUGHT PROVOKING Draw a triangle. Copy the triangle multiple times to create a rug design made of congruent triangles. Which property guarantees that all the triangles are congruent?
21. REASONING $\triangle J K L$ is congruent to $\triangle X Y Z$. Identify all pairs of congruent corresponding parts.
22. HOW DO YOU SEE IT? In the diagram, $A B E F \cong C D E F$.

a. Explain how you know that $\overline{B E} \cong \overline{D E}$ and $\angle A B E \cong \angle C D E$.
b. Explain how you know that $\angle G B E \cong \angle G D E$.
c. Explain how you know that $\angle G E B \cong \angle G E D$.
d. Do you have enough information to prove that $\triangle B E G \cong \triangle D E G$? Explain.

MATHEMATICAL CONNECTIONS In Exercises 23 and 24, use the given information to write and solve a system of linear equations to find the values of \boldsymbol{x} and \boldsymbol{y}.
23. $\triangle L M N \cong \triangle P Q R, m \angle L=40^{\circ}, m \angle M=90^{\circ}$, $m \angle P=(17 x-y)^{\circ}, m \angle R=(2 x+4 y)^{\circ}$
24. $\triangle S T U \cong \triangle X Y Z, m \angle T=28^{\circ}, m \angle U=(4 x+y)^{\circ}$, $m \angle X=130^{\circ}, m \angle Y=(8 x-6 y)^{\circ}$
25. PROOF Prove that the criteria for congruent triangles in this lesson is equivalent to the definition of congruence in terms of rigid motions.

What can you conclude from the diagram? (Section 1.6)
26.

28.

29.

