2.5

Proving Statements about Segments and Angles

TeXAS Essential
Knowledge and Skills
Preparing for
G.6.A
G.6.B
G.6.D
G.6.E

REASONING

To be proficient in math, you need to know and be able to use algebraic properties.

Essential Question
How can you prove a mathematical statement?
A proof is a logical argument that uses deductive reasoning to show that a statement is true.

EXPLORATION 1 Writing Reasons in a Proof

Work with a partner. Four steps of a proof are shown. Write the reasons for each statement.

Given $A C=A B+A B$

Prove $A B=B C$

EXPLORATION 2 Writing Steps in a Proof

Work with a partner. Six steps of a proof are shown. Complete the statements that correspond to each reason.

Given $m \angle 1=m \angle 3$
Prove $m \angle E B A=m \angle C B D$

STATEMENTS	REASONS
1.	1. Given
2. $m \angle E B A=m \angle 2+m \angle 3$	2. Angle Addition Postulate (Post.1.4)
3. $m \angle E B A=m \angle 2+m \angle 1$	3. Substitution Property of Equality
4. $m \angle E B A=$	4. Commutative Property of Addition
5. $m \angle 1+m \angle 2=$	5. Angle Addition Postulate (Post.1.4)
6.	6. Transitive Property of Equality

Communicate Your Answer

3. How can you prove a mathematical statement?
4. Use the given information and the figure to write a proof for the statement.

Given B is the midpoint of $\overline{A C}$.
C is the midpoint of $\overline{B D}$.

Prove $A B=C D$

2.5 Lesson

Core Vocabulary

proof, p. 100
two-column proof, p. 100
theorem, p. 101

What You Will Learn

Write two-column proofs.
Name and prove properties of congruence.

Writing Two-Column Proofs

A proof is a logical argument that uses deductive reasoning to show that a statement is true. There are several formats for proofs. A two-column proof has numbered statements and corresponding reasons that show an argument in a logical order.

In a two-column proof, each statement in the left-hand column is either given information or the result of applying a known property or fact to statements already made. Each reason in the right-hand column is the explanation for the corresponding statement.

EXAMPLE 1 Writing a Two-Column Proof

Write a two-column proof for the situation in Example 4 from the Section 2.4 lesson.

Given $m \angle \mathrm{l}=m \angle 3$
Prove $m \angle D B A=m \angle E B C$

STATEMENTS	REASONS
1. $m \angle 1=m \angle 3$	1. Given
2. $m \angle D B A=m \angle 3+m \angle 2$	2. Angle Addition Postulate (Post.1.4)
3. $m \angle D B A=m \angle 1+m \angle 2$	3. Substitution Property of Equality
4. $m \angle 1+m \angle 2=m \angle E B C$	4. Angle Addition Postulate (Post.1.4)
5. $m \angle D B A=m \angle E B C$	5. Transitive Property of Equality

Monitoring Progress

1. Six steps of a two-column proof are shown. Copy and complete the proof.

Given T is the midpoint of $\overline{S U}$.

Prove $x=5$

STATEMENTS	REASONS
1. T is the midpoint of $\overline{S U}$.	1. $\overline{\text { 2. } \overline{S T} \cong \overline{T U}}$
3. $S T=T U$ 2. Definition of midpoint 4. $7 x=3 x+20$ 3. Definition of congruent segments 5.. 4. $\overline{\text { Subtraction Property of Equality }}$ 6. $x=5$ 6..	

Using Properties of Congruence

The reasons used in a proof can include definitions, properties, postulates, and theorems. A theorem is a statement that can be proven. Once you have proven a theorem, you can use the theorem as a reason in other proofs.

G) Theorems

Theorem 2.1 Properties of Segment Congruence

Segment congruence is reflexive, symmetric, and transitive.
Reflexive For any segment $A B, \overline{A B} \cong \overline{A B}$.
Symmetric If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A B}$.
Transitive If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$.
Proofs Ex. 11, p. 103; Example 3, p. 101; Chapter Review 2.5 Example, p. 118

Theorem 2.2 Properties of Angle Congruence

Angle congruence is reflexive, symmetric, and transitive.
Reflexive For any angle $A, \angle A \cong \angle A$.
Symmetric If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
Transitive If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.
Proofs Ex. 25, p. 118; 2.5 Concept Summary, p. 102; Ex. 12, p. 103

EXAMPLE 2 Naming Properties of Congruence

Name the property that the statement illustrates.
a. If $\angle T \cong \angle V$ and $\angle V \cong \angle R$, then $\angle T \cong \angle R$.
b. If $\overline{J L} \cong \overline{Y Z}$, then $\overline{Y Z} \cong \overline{J L}$.

SOLUTION

a. Transitive Property of Angle Congruence
b. Symmetric Property of Segment Congruence

In this lesson, most of the proofs involve showing that congruence and equality are

STUDY TIP
When writing a proof, organize your reasoning by copying or drawing a diagram for the situation described. Then identify the Given and Prove statements.
equivalent. You may find that what you are asked to prove seems to be obviously true. It is important to practice writing these proofs to help you prepare for writing more-complicated proofs in later chapters.

EXAMPLE 3 Proving a Symmetric Property of Congruence

Write a two-column proof for the Symmetric Property of Segment Congruence.
$\begin{array}{ll}\text { Given } & \overline{L M} \cong \overline{N P} \\ \text { Prove } & \overline{N P} \cong \overline{L M}\end{array}$

STATEMENTS	REASONS
1. $\overline{L M} \cong \overline{N P}$	1. Given
2. $L M=N P$	2. Definition of congruent segments
3. $N P=L M$	3. Symmetric Property of Equality
4. $\overline{N P} \cong \overline{L M}$	4. Definition of congruent segments

EXAMPLE 4 Writing a Two-Column Proof

Prove this property of midpoints: If you know that M is the midpoint of $\overline{A B}$, prove that $A B$ is two times $A M$ and $A M$ is one-half $A B$.

Given M is the midpoint of $\overline{A B}$.

Prove $A B=2 A M, A M=\frac{1}{2} A B$

STATEMENTS	REASONS
1. M is the midpoint of $\overline{A B}$.	1. Given
2. $\overline{A M} \cong \overline{M B}$ 2. Definition of midpoint 3. $A M=M B$ 3. Definition of congruent segments 4. $A M+M B=A B$ 4. Segment Addition Postulate (Post. 1.2) 5. $A M+A M=A B$ 5. Substitution Property of Equality 6. $2 A M=A B$ 6. Distributive Property 7. $A M=\frac{1}{2} A B$ 7. Division Property of Equality	

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com
Name the property that the statement illustrates.
2. $\overline{G H} \cong \overline{G H}$
3. If $\angle K \cong \angle P$, then $\angle P \cong \angle K$.
4. Look back at Example 4. What would be different if you were proving that $A B=2 \cdot M B$ and that $M B=\frac{1}{2} A B$ instead?

Concept Summary

Writing a Two-Column Proof

In a proof, you make one statement at a time until you reach the conclusion.
Because you make statements based on facts, you are using deductive reasoning. Usually the first statement-and-reason pair you write is given information.

Proof of the Symmetric Property of Angle Congruence

Copy or draw diagrams and label given information to help develop proofs. Do not mark or label the information in the Prove statement on the diagram.

statements based on facts that you know or on conclusions from deductive reasoning	STATEMENTS	REASONS
	$\rightarrow\left\{\begin{array}{l} \text { 1. } \angle 1 \cong \angle 2 \\ \text { 2. } m \angle 1=m \angle 2 \\ \text { 3. } m \angle 2=m \angle 1 \\ \text { 4. } \angle 2 \cong \angle 1 \end{array}\right.$	1. Given 2. Definition of congruent 3. Symmetric Property of 4. Definition of congruent
	The number of statements will vary.	Remember to give a reason for the last statement.

> definitions, postulates, or proven theorems that allow you to state the corresponding statement

-Vocabulary and Core Concept Check

1. WRITING How is a theorem different from a postulate?
2. COMPLETE THE SENTENCE In a two-column proof, each \qquad is on the left and each \qquad is on the right.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, copy and complete the proof. (See Example 1.)
3. Given $P Q=R S$

Prove $P R=Q S$

4. Given $\angle 1$ is a complement of $\angle 2$.

$$
\angle 2 \cong \angle 3
$$

Prove $\angle 1$ is a complement of $\angle 3$.

STATEMENTS	REASONS
1. $P Q=R S$	1.
2. $P Q+Q R=R S+Q R$	$2 .$
3.	3. Segment Addition Postulate (Post. 1.2)
4. $R S+Q R=Q S$	4. Segment Addition Postulate (Post. 1.2)
5. $P R=Q S$	5.

STATEMENTS	REASONS
1. $\angle 1$ is a complement of $\angle 2$.	1. Given
2. $\angle 2 \cong \angle 3$	2.
3. $m \angle 1+m \angle 2=90^{\circ}$	3.
4. $m \angle 2=m \angle 3$	4. Definition of congruent angles
5.	5. Substitution Property of Equality
6. $\angle 1$ is a complement of $\angle 3$.	6.

In Exercises 5-10, name the property that the statement illustrates. (See Example 2.)
5. If $\overline{P Q} \cong \overline{S T}$ and $\overline{S T} \cong \overline{U V}$, then $\overline{P Q} \cong \overline{U V}$.
6. $\angle F \cong \angle F$
7. If $\angle G \cong \angle H$, then $\angle H \cong \angle G$.
8. $\overline{D E} \cong \overline{D E}$
9. If $\overline{X Y} \cong \overline{U V}$, then $\overline{U V} \cong \overline{X Y}$.
10. If $\angle L \cong \angle M$ and $\angle M \cong \angle N$, then $\angle L \cong \angle N$.

PROOF In Exercises 11 and 12, write a two-column proof for the property. (See Example 3.)
11. Reflexive Property of Segment Congruence (Thm. 2.1)
12. Transitive Property of Angle Congruence (Thm. 2.2)

PROOF In Exercises 13 and 14, write a two-column proof. (See Example 4.)
13. Given $\angle G F H \cong \angle G H F$

Prove $\angle E F G$ and $\angle G H F$ are supplementary.

Prove $\overline{B C} \cong \overline{D F}$

15. ERROR ANALYSIS In the diagram, $\overline{M N} \cong \overline{L Q}$ and $\overline{L Q} \cong \overline{P N}$. Describe and correct the error in the reasoning.

Because $\overline{M N} \cong \overline{L Q}$ and $\overline{L Q} \cong \overline{P N}$, then $\overline{M N} \cong \overline{P N}$ by the Reflexive Property of Segment
 Congruence (Thm. 2.1).
16. MODELING WITH MATHEMATICS The distance from the restaurant to the shoe store is the same as the distance from the café to the florist. The distance from the shoe store to the movie theater is the same as the distance from the movie theater to the café, and from the florist to the dry cleaners.

Use the steps below to prove that the distance from the restaurant to the movie theater is the same as the distance from the cafe to the dry cleaners.
a. State what is given and what is to be proven for the situation.
b. Write a two-column proof.
17. REASONING In the sculpture shown, $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$. Classify the triangle and justify your answer.

18. MAKING AN ARGUMENT In the figure, $\overline{S R} \cong \overline{C B}$ and $\overline{A C} \cong \overline{Q R}$. Your friend claims that, because of this, $\overline{C B} \cong \overline{A C}$ by the Transitive Property of Segment Congruence (Thm. 2.1). Is your friend correct?

19. WRITING Explain why you do not use inductive reasoning when writing a proof.
20. HOW DO YOU SEE IT? Use the figure to write Given and Prove statements for each conclusion.

a. The acute angles of a right triangle are complementary.
b. A segment connecting the midpoints of two sides of a triangle is half as long as the third side.
21. REASONING Fold two corners of a piece of paper so their edges match, as shown.
a. What do you notice about the angle formed at the top of the page by the folds?
b. Write a two-column proof to show that the angle measure is always the same no matter how you make the folds.

22. THOUGHT PROVOKING The distance from Springfield to Lakewood City is equal to the distance from Springfield to Bettsville. Janisburg is 50 miles farther from Springfield than Bettsville. Moon Valley is 50 miles farther from Springfield than Lakewood City is. Use line segments to draw a diagram that represents this situation.
23. MATHEMATICAL CONNECTIONS Solve for x using the given information. Justify each step.
Given $\overline{Q R} \cong \overline{P Q}, \overline{R S} \cong \overline{P Q}$

Explain your reasoning.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Use the figure. (Section 1.6)
24. $\angle 1$ is a complement of $\angle 4$, and $m \angle 1=33^{\circ}$. Find $m \angle 4$.
26. Name a pair of vertical angles.
25. $\angle 3$ is a supplement of $\angle 2$, and $m \angle 2=147^{\circ}$. Find $m \angle 3$.

