2.4 Algebraic Reasoning

Texas Essential
Knowledge and Skills
Preparing for
G.6.A
G.6.B
G.6.D
G.6.E

ANALYZING
MATHEMATICAL RELATIONSHIPS

To be proficient in math, you need to look closely to discern a pattern or structure.

Essential Question How can algebraic properties help you solve an equation?

EXPLORATION 1 Justifying Steps in a Solution

Work with a partner. In previous courses, you studied different properties, such as the properties of equality and the Distributive, Commutative, and Associative Properties. Write the property that justifies each of the following solution steps.

$$
\begin{aligned}
& \text { Algebraic Step } \\
& 2(x+3)-5=5 x+4 \\
& 2 x+6-5=5 x+4 \\
& 2 x+1=5 x+4 \\
& 2 x-2 x+1=5 x-2 x+4 \\
& 1=3 x+4 \\
& 1-4=3 x+4-4 \\
&-3=3 x \\
& \frac{-3}{3}=\frac{3 x}{3} \\
&-1=x \\
& x=-1
\end{aligned}
$$

EXPLORATION 2 Stating Algebraic Properties

Work with a partner. The symbols \downarrow and \bullet represent addition and multiplication (not necessarily in that order). Determine which symbol represents which operation. Justify your answer. Then state each algebraic property being illustrated.

Example of Property

Name of Property

\square

Communicate Your Answer

3. How can algebraic properties help you solve an equation?
4. Solve $3(x+1)-1=-13$. Justify each step.

2.4 Lesson

Core Vocabulary

Previous

equation
solve an equation
formula

REMEMBER

Inverse operations "undo" each other. Addition and subtraction are inverse operations. Multiplication and division are inverse operations.

What You Will Learn

Use Algebraic Properties of Equality to justify the steps in solving an equation.

- Use the Distributive Property to justify the steps in solving an equation.
- Use properties of equality involving segment lengths and angle measures.

Using Algebraic Properties of Equality

When you solve an equation, you use properties of real numbers. Segment lengths and angle measures are real numbers, so you can also use these properties to write logical arguments about geometric figures.

G) Core Concept

Algebraic Properties of Equality

Let a, b, and c be real numbers.
Addition Property of Equality
If $a=b$, then $a+c=b+c$.
Subtraction Property of Equality
If $a=b$, then $a-c=b-c$.
Multiplication Property of Equality
If $a=b$, then $a \cdot c=b \cdot c, c \neq 0$.
Division Property of Equality
If $a=b$, then $\frac{a}{c}=\frac{b}{c}, c \neq 0$.
Substitution Property of Equality

If $a=b$, then a can be substituted for b (or b for a) in any equation or expression.

EXAMPLE 1 Justifying Steps

Solve $3 x+2=23-4 x$. Justify each step.

SOLUTION

Equation	Explanation	Reason
$3 x+2=23-4 x$	Write the equation.	Given
$3 x+2+4 x=23-4 x+4 x$	Add $4 x$ to each side.	Addition Property of Equality
$7 x+2=23$	Combine like terms.	Simplify.
$7 x+2-2=23-2$	Subtract 2 from each side.	Subtraction Property of Equality
$7 x=21$	Combine constant terms.	Simplify. $x$$=3$

The solution is $x=3$.

Monitoring Progress Help in English and Spanish at BigldeasMath.com
Solve the equation. Justify each step.

1. $6 x-11=-35$
2. $-2 p-9=10 p-17$
3. $39-5 z=-1+5 z$

Using the Distributive Property

Core Concept

Distributive Property

Let a, b, and c be real numbers.
Sum $a(b+c)=a b+a c \quad$ Difference $a(b-c)=a b-a c$

EXAMPLE 2 Using the Distributive Property

Solve $-5(7 w+8)=30$. Justify each step.

SOLUTION

Equation

$$
\begin{aligned}
-5(7 w+8) & =30 \\
-35 w-40 & =30 \\
-35 w & =70 \\
w & =-2
\end{aligned}
$$

Explanation
Write the equation.
Multiply.
Add 40 to each side.
Divide each side by -35 .

Reason

Given
Distributive Property
Addition Property of Equality
Division Property of Equality

The solution is $w=-2$.

EXAMPLE 3 Solving a Real-Life Problem

You get a raise at your part-time job. To write your raise as a percent, use the formula $p(r+1)=n$, where p is your previous wage, r is the percent increase (as a decimal), and n is your new wage. Solve the formula for r. What is your raise written as a percent when your hourly wage increases from $\$ 7.25$ to $\$ 7.54$ per hour?

SOLUTION

Step 1 Solve for r in the formula $p(r+1)=n$.

Equation

$$
\begin{aligned}
p(r+1) & =n \\
p r+p & =n \\
p r & =n-p \\
r & =\frac{n-p}{p}
\end{aligned}
$$

Explanation

Write the equation.
Multiply.
Subtract p from each side.
Divide each side by p.

Reason
Given
Distributive Property
Subtraction Property of Equality
Division Property of Equality

Step 2 Evaluate $r=\frac{n-p}{p}$ when $n=7.54$ and $p=7.25$.

$$
r=\frac{n-p}{p}=\frac{7.54-7.25}{7.25}=\frac{0.29}{7.25}=0.04
$$

Your raise is 4%.

Monitoring Progress

Solve the equation. Justify each step.
4. $3(3 x+14)=-3$
5. $4=-10 b+6(2-b)$
6. Solve the formula $A=\frac{1}{2} b h$ for b. Justify each step. Then find the base of a triangle whose area is 952 square feet and whose height is 56 feet.

Using Other Properties of Equality

The following properties of equality are true for all real numbers. Segment lengths and angle measures are real numbers, so these properties of equality are true for all segment lengths and angle measures.

Core Concept

EXAMPLE 4 Using Properties of Equality with Angle Measures

You reflect the beam of a spotlight off a mirror lying flat on a stage, as shown. Determine whether $m \angle D B A=m \angle E B C$.

SOLUTION

$m \angle D B A=m \angle E B C$

$$
\begin{gathered}
\text { Equation } \\
m \angle 1=m \angle 3 \\
m \angle D B A=m \angle 3+m \angle 2 \\
m \angle D B A=m \angle 1+m \angle 2 \\
m \angle 1+m \angle 2=m \angle E B C
\end{gathered}
$$

Explanation
Marked in diagram.
Add measures of Angle Addition Postulate (Post. 1.4) adjacent angles.
Substitute $m \angle 1 \quad$ Substitution Property of Equality for $m \angle 3$.

Add measures of adjacent angles.

Both measures are Transitive Property of Equality equal to the sum
$m \angle 1+m \angle 2$.

Monitoring Progress

EXAMPLE 5 Modeling with Mathematics

A park, a shoe store, a pizza shop, and a movie theater are located in order on a city street. The distance between the park and the shoe store is the same as the distance between the pizza shop and the movie theater. Show that the distance between the park and the pizza shop is the same as the distance between the shoe store and the movie theater.

SOLUTION

1. Understand the Problem You know that the locations lie in order and that the distance between two of the locations (park and shoe store) is the same as the distance between the other two locations (pizza shop and movie theater). You need to show that two of the other distances are the same.
2. Make a Plan Draw and label a diagram to represent the situation.

Modify your diagram by letting the points P, S, Z, and M represent the park, the shoe store, the pizza shop, and the movie theater, respectively. Show any mathematical relationships.

Use the Segment Addition Postulate (Postulate 1.2) to show that $P Z=S M$.
3. Solve the Problem

Equation Explanation Reason
$P S=Z M$
Marked in diagram.
Given
$P Z=P S+S Z \quad$ Add lengths of \quad Segment Addition Postulate (Post. 1.2) adjacent segments.
$S M=S Z+Z M \quad$ Add lengths of \quad Segment Addition Postulate (Post. 1.2) adjacent segments.
$P S+S Z=Z M+S Z \quad$ Add $S Z$ to each side Addition Property of Equality of $P S=Z M$.

$P Z=S M$	Substitute $P Z$ for \quad Substitution Property of Equality
	$P S+S Z$ and $S M$
	for $Z M+S Z$.

4. Look Back Reread the problem. Make sure your diagram is drawn precisely using the given information. Check the steps in your solution.

Monitoring Progress

Name the property of equality that the statement illustrates.
10. If $J K=K L$ and $K L=16$, then $J K=16$.
11. $P Q=S T$, so $S T=P Q$.
12. $Z Y=Z Y$
13. In Example 5, a hot dog stand is located halfway between the shoe store and the pizza shop, at point H. Show that $P H=H M$.

-Vocabulary and Core Concept Check

1. VOCABULARY The statement "The measure of an angle is equal to itself" is true because of what property?
2. DIFFERENT WORDS, SAME QUESTION Which is different? Find both answers.

What property justifies the following statement?
If $c=d$, then $d=c . \quad$ If $J K=L M$, then $L M=J K$.

If $e=f$ and $f=g$, then $e=g . \quad$ If $m \angle R=m \angle S$, then $m \angle S=m \angle R$.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, write the property that justifies each step.

$$
\text { 3. } \begin{aligned}
3 x-12 & =7 x+8 \\
-4 x-12 & =8 \\
-4 x & =20 \\
x & =-5
\end{aligned}
$$

Given
\qquad
\qquad
\qquad
4. $5(x-1)=4 x+13$
$5 x-5=4 x+13$
$x-5=13$
$x=18$
Given
\qquad
\qquad
\qquad

In Exercises 5-14, solve the equation. Justify each step. (See Examples 1 and 2.)
5. $5 x-10=-40$
6. $6 x+17=-7$
7. $2 x-8=6 x-20$
8. $4 x+9=16-3 x$
9. $5(3 x-20)=-10$
10. $3(2 x+11)=9$
11. $2(-x-5)=12$
12. $44-2(3 x+4)=-18 x$
13. $4(5 x-9)=-2(x+7)$
14. $3(4 x+7)=5(3 x+3)$

In Exercises 15-20, solve the equation for \boldsymbol{y}. Justify each step. (See Example 3.)
15. $5 x+y=18$
16. $-4 x+2 y=8$
17. $2 y+0.5 x=16$
18. $\frac{1}{2} x-\frac{3}{4} y=-2$
19. $12-3 y=30 x+6$
20. $3 x+7=-7+9 y$

In Exercises 21-24, solve the equation for the given variable. Justify each step. (See Example 3.)
21. $C=2 \pi r ; r$
22. $I=\operatorname{Prt} ; P$
23. $S=180(n-2) ; n$
24. $S=2 \pi r^{2}+2 \pi r h ; h$

In Exercises 25-32, name the property of equality that the statement illustrates.
25. If $x=y$, then $3 x=3 y$.
26. If $A M=M B$, then $A M+5=M B+5$.
27. $x=x$
28. If $x=y$, then $y=x$.
29. $m \angle Z=m \angle Z$
30. If $m \angle A=29^{\circ}$ and $m \angle B=29^{\circ}$, then $m \angle A=m \angle B$.
31. If $A B=L M$, then $L M=A B$.
32. If $B C=X Y$ and $X Y=8$, then $B C=8$.

In Exercises 33-40, use the property to copy and complete the statement.
33. Substitution Property of Equality:

If $A B=20$, then $A B+C D=$ \qquad .
34. Symmetric Property of Equality:

If $m \angle 1=m \angle 2$, then \qquad _.
35. Addition Property of Equality:

If $A B=C D$, then $A B+E F=$ \qquad .
36. Multiplication Property of Equality:

If $A B=C D$, then $5 \cdot A B=$ \qquad _.
37. Subtraction Property of Equality:

If $L M=X Y$, then $L M-G H=$ \qquad -
38. Distributive Property:

If $5(x+8)=2$, then \qquad $+$ \qquad $=2$.
39. Transitive Property of Equality:

If $m \angle 1=m \angle 2$ and $m \angle 2=m \angle 3$, then \qquad .
40. Reflexive Property of Equality:
$m \angle A B C=$ \qquad -

ERROR ANALYSIS In Exercises 41 and 42, describe and correct the error in solving the equation.
41.

$$
\begin{array}{ll}
7 x=x+24 & \text { Given } \\
8 x=24 & \begin{array}{l}
\text { Addition Property } \\
\text { of Equality }
\end{array} \\
x=3 & \begin{array}{l}
\text { Division Property } \\
\text { of Equality }
\end{array}
\end{array}
$$

42.

$$
\begin{aligned}
6 x+14=32 & \text { Given } \\
6 x=18 & \begin{array}{l}
\text { Division Property } \\
\text { of Equality }
\end{array} \\
x=3 & \text { Simplify. }
\end{aligned}
$$

43. REWRITING A FORMULA The formula for the perimeter P of a rectangle is $P=2 \ell+2 w$, where ℓ is the length and w is the width. Solve the formula for ℓ. Justify each step. Then find the length of a rectangular lawn with a perimeter of 32 meters and a width of 5 meters.
44. REWRITING A FORMULA The formula for the area A of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$, where h is the height and b_{1} and b_{2} are the lengths of the two bases. Solve the formula for b_{1}. Justify each step. Then find the length of one of the bases of the trapezoid when the area of the trapezoid is 91 square meters, the height is 7 meters, and the length of the other base is 20 meters.
45. ANALYZING RELATIONSHIPS In the diagram, $m \angle A B D=m \angle C B E$. Show that $m \angle 1=m \angle 3$. (See Example 4.)

46. ANALYZING RELATIONSHIPS In the diagram, $A C=B D$. Show that $A B=C D$. (See Example 5.)

47. ANALYZING RELATIONSHIPS Copy and complete the table to show that $m \angle 2=m \angle 3$.

Equation			Reason
$m \angle 1=m \angle 4, m \angle E H F=90^{\circ}$, $m \angle G H F=90^{\circ}$	Given		
$m \angle E H F=m \angle G H F$			

48. WRITING Compare the Reflexive Property of Equality with the Symmetric Property of Equality. How are the properties similar? How are they different?

REASONING In Exercises 49 and 50, show that the

 perimeter of $\triangle A B C$ is equal to the perimeter of $\triangle A D C$.49.

50.

51. MATHEMATICAL CONNECTIONS In the figure, $\overline{Z Y} \cong \overline{X W}, Z X=5 x+17, Y W=10-2 x$, and $Y X=3$. Find $Z Y$ and $X W$.

52. HOW DO YOU SEE IT? The bar graph shows the number of hours each employee works at a grocery store. Give an example of the Reflexive, Symmetric, and Transitive Properties of Equality.

53. ATTENDING TO PRECISION Which of the following statements illustrate the Symmetric Property of Equality? Select all that apply.
(A) If $A C=R S$, then $R S=A C$.
(B) If $x=9$, then $9=x$.
(C) If $A D=B C$, then $D A=C B$.
(D) $A B=B A$
(E) If $A B=L M$ and $L M=R T$, then $A B=R T$.
(F) If $X Y=E F$, then $F E=X Y$.
54. THOUGHT PROVOKING Write examples from your everyday life to help you remember the Reflexive, Symmetric, and Transitive Properties of Equality. Justify your answers.
55. MULTIPLE REPRESENTATIONS The formula to convert a temperature in degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ to degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is $C=\frac{5}{9}(F-32)$.
a. Solve the formula for F. Justify each step.
b. Make a table that shows the conversion to Fahrenheit for each temperature: $0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}, 32^{\circ} \mathrm{C}$, and $41^{\circ} \mathrm{C}$.
c. Use your table to graph the temperature in degrees Fahrenheit as a function of the temperature in degrees Celsius. Is this a linear function?
56. REASONING Select all the properties that would also apply to inequalities. Explain your reasoning.
(A) Addition Property
(B) Subtraction Property
(C) Substitution Property
(D) Reflexive Property
(E) Symmetric Property
(F) Transitive Property

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Name the definition, property, or postulate that is represented by each diagram.
(Section 1.2, Section 1.3, and Section 1.5)
57.

$X Y+Y Z=X Z$
58.

59.

60.

$$
m \angle A B D+m \angle D B C=m \angle A B C
$$

