2 Solving Linear Inequalities

2.1 Writing and Graphing Inequalities
2.2 Solving Inequalities Using Addition or Subtraction
2.3 Solving Inequalities Using Multiplication or Division
2.4 Solving Multi-Step Inequalities
2.5 Solving Compound Inequalities

Mathematical Thinking: Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace.
Maintaining Mathematical Proficiency

Graphing Numbers on a Number Line (6.2.C)

Example 1 Graph each number.

a. 3

b. −5

Example 2 Graph each number.

a. |4|

b. |−2|

The absolute value of a positive number is positive.

The absolute value of a negative number is positive.

Graph the number.

1. 6
2. |2|
3. |−1|
4. 2 + |−2|
5. 1 − |−4|
6. −5 + |3|

Comparing Real Numbers (6.2.C)

Example 3 Complete the statement −1 < −5 with <, >, or =.

Graph −5.
Graph −1.
−1 is to the right of −5. So, −1 > −5.

Complete the statement with <, >, or =.

7. 2 < 9
8. −6 < 5
9. −12 < −4
10. −7 < −13
11. −8 < |8|
12. −10 < |−18|

13. ABSTRACT REASONING A number a is to the left of a number b on the number line. How do the numbers −a and −b compare?

Using a Graphing Calculator

Core Concept

Solving an Inequality in One Variable

You can use a graphing calculator to solve an inequality.

1. Enter the inequality into a graphing calculator.
2. Graph the inequality.
3. Use the graph to write the solution.

EXAMPLE 1 Using a Graphing Calculator

Use a graphing calculator to solve (a) \(2x - 1 < x + 2\) and (b) \(2x - 1 \leq x + 2\).

SOLUTION

a. Enter the inequality \(2x - 1 < x + 2\) into a graphing calculator. Press \(\text{graph}\).

\[
\begin{align*}
Y1 &= 2x - 1 < x + 2 \\
Y2 &= \\
Y3 &= \\
Y4 &= \\
Y5 &= \\
Y6 &= \\
Y7 &= \\
\end{align*}
\]

Use the inequality symbol <.

The solution of the inequality is \(x < 3\).

b. Enter the inequality \(2x - 1 \leq x + 2\) into a graphing calculator. Press \(\text{graph}\).

\[
\begin{align*}
Y1 &= 2x - 1 \leq x + 2 \\
Y2 &= \\
Y3 &= \\
Y4 &= \\
Y5 &= \\
Y6 &= \\
Y7 &= \\
\end{align*}
\]

Use the inequality symbol \(\leq\).

The solution of the inequality is \(x \leq 3\).

Notice that the graphing calculator does not distinguish between the solutions \(x < 3\) and \(x \leq 3\). You must distinguish between these yourself, based on the inequality symbol used in the original inequality.

Monitoring Progress

Use a graphing calculator to solve the inequality.

1. \(2x + 3 < x - 1\)
2. \(-x - 1 > -2x + 2\)
3. \(\frac{1}{2}x + 1 \leq \frac{3}{2}x + 3\)
2.1 Writing and Graphing Inequalities

Essential Question How can you use an inequality to describe a real-life statement?

EXPLORATION 1 Writing and Graphing Inequalities

Work with a partner. Write an inequality for each statement. Then sketch the graph of the numbers that make each inequality true.

a. Statement The temperature \(t \) in Sweden is at least \(-10\)°C.

Inequality

Graph

b. Statement The elevation \(e \) of Alabama is at most 2407 feet.

Inequality

Graph

EXPLORATION 2 Writing Inequalities

Work with a partner. Write an inequality for each graph. Then, in words, describe all the values of \(x \) that make each inequality true.

a.

b.

c.

d.

Communicate Your Answer

3. How can you use an inequality to describe a real-life statement?

4. Write a real-life statement that involves each inequality.
 a. \(x < 3.5 \)
 b. \(x \leq 6 \)
 c. \(x > -2 \)
 d. \(x \geq 10 \)
What You Will Learn

- Write linear inequalities.
- Sketch the graphs of linear inequalities.
- Write linear inequalities from graphs.

Writing Linear Inequalities

An inequality is a mathematical sentence that compares expressions. An inequality contains the symbol <, >, ≤, or ≥. To write an inequality, look for the following phrases to determine what inequality symbol to use.

<table>
<thead>
<tr>
<th>Inequality Symbols</th>
<th><</th>
<th>></th>
<th>≤</th>
<th>≥</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Phrases</td>
<td>is less than or equal to</td>
<td>is greater than</td>
<td>is less than or equal to</td>
<td>is greater than or equal to</td>
</tr>
<tr>
<td></td>
<td>is fewer than</td>
<td>is more than</td>
<td>is at most</td>
<td>is at least</td>
</tr>
<tr>
<td></td>
<td>is no more than</td>
<td>is no less than</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 1 Writing Inequalities

Write each sentence as an inequality.

a. A number \(w \) minus 3.5 is less than or equal to \(-2\).

b. Three is less than a number \(n \) plus 5.

c. Zero is greater than or equal to twice a number \(x \) plus 1.

SOLUTION

a. A number \(w \) minus 3.5 is less than or equal to \(-2\).

\[
\begin{align*}
\text{An inequality is } w - 3.5 & \leq -2.
\end{align*}
\]

b. Three is less than a number \(n \) plus 5.

\[
\begin{align*}
3 & < n + 5
\end{align*}
\]

An inequality is \(3 < n + 5 \).

c. Zero is greater than or equal to twice a number \(x \) plus 1.

\[
\begin{align*}
0 & \geq 2x + 1
\end{align*}
\]

An inequality is \(0 \geq 2x + 1 \).

Monitoring Progress

Write the sentence as an inequality.

1. A number \(b \) is fewer than 30.4.

2. \(-\frac{7}{10}\) is at least twice a number \(k \) minus 4.
Sketching the Graphs of Linear Inequalities

A solution of an inequality is a value that makes the inequality true. An inequality can have more than one solution. The set of all solutions of an inequality is called the solution set.

<table>
<thead>
<tr>
<th>Value of x</th>
<th>$x + 5 \geq -2$</th>
<th>Is the inequality true?</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td>$-6 + 5 \geq -2$</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>$-1 \geq -2$</td>
<td>✓</td>
</tr>
<tr>
<td>-7</td>
<td>$-7 + 5 \geq -2$</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>$-2 \geq -2$</td>
<td>✓</td>
</tr>
<tr>
<td>-8</td>
<td>$-8 + 5 \geq -2$</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>$-3 \neq -2$</td>
<td>✓</td>
</tr>
</tbody>
</table>

Recall that a diagonal line through an inequality symbol means the inequality is not true. For instance, the symbol \geq means “is not greater than or equal to.”

Example 2 Checking Solutions

Tell whether -4 is a solution of each inequality.

a. $x + 8 < -3$

b. $-4.5x > -21$

Solution

a. $x + 8 < -3$

Write the inequality.

$-4 + 8 < -3$

Substitute -4 for x.

$4 \neq -3$ ✓ Simplify.

4 is not less than -3.

So, -4 is not a solution of the inequality.

b. $-4.5x > -21$

Write the inequality.

$-4.5(-4) > -21$

Substitute -4 for x.

$18 > -21$ ✓ Simplify.

18 is greater than -21.

So, -4 is a solution of the inequality.

Monitoring Progress

Tell whether -6 is a solution of the inequality.

3. $c + 4 < -1$
4. $10 \leq 3 - m$
5. $21 \div x \geq -3.5$
6. $4x - 25 > -2$
The **graph of an inequality** shows the solution set of the inequality on a number line. An open circle, ○, is used when a number is *not* a solution. A closed circle, ●, is used when a number is a solution. An arrow to the left or right shows that the graph continues in that direction.

Example 3 Graphing Inequalities

Graph each inequality.

a. \(y \leq -3 \)
b. \(2 < x \)
c. \(x > 0 \)

Solution

a. Test a number to the left of \(-3\).
\(y = -4 \) is a solution.
Test a number to the right of \(-3\).
\(y = 0 \) is not a solution.

b. Test a number to the left of \(2\).
\(x = 0 \) is not a solution.
Test a number to the right of \(2\).
\(x = 4 \) is a solution.

c. Just by looking at the inequality, you can see that it represents the set of all positive numbers.

Another Way

Another way to represent the solutions of an inequality is to use **set-builder notation**. In Example 3b, the solutions can be written as \(\{x \mid x > 2\} \), which is read as “the set of all numbers \(x \) such that \(x \) is greater than \(2\).”

Monitoring Progress

Graph the inequality.

7. \(b > -8 \)
8. \(1.4 \geq g \)
9. \(r < \frac{1}{2} \)
10. \(v \geq \sqrt{36} \)
Writing Linear Inequalities from Graphs

EXAMPLE 4 Writing Inequalities from Graphs

The graphs show the height restrictions \(h \) (in inches) for two rides at an amusement park. Write an inequality that represents the height restriction of each ride.

Ride A

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{44} & \text{46} & \text{48} & \text{50} & \text{52} & \text{54} \\
\hline
\end{array}
\]

SOLUTION

Ride A

The closed circle means that 48 is a solution.

Because the arrow points to the right, all numbers greater than 48 are solutions.

Ride B

The open circle means that 52 is \(\text{not} \) a solution.

Because the arrow points to the left, all numbers less than 52 are solutions.

So, \(h \geq 48 \) represents the height restriction for Ride A, and \(h < 52 \) represents the height restriction for Ride B.

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

11. Write an inequality that represents the graph.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{–8} & \text{–7} & \text{–6} & \text{–5} & \text{–4} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{–3} & \text{–2} & \text{–1} & \text{0} & \text{1} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{2} & \text{3} & \text{4} & \text{5} & \text{6} \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{7} & \text{8} & \text{9} & \text{10} & \text{11} \\
\hline
\end{array}
\]

Concept Summary

Representing Linear Inequalities

<table>
<thead>
<tr>
<th>Words</th>
<th>Algebra</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x) is less than 2</td>
<td>(x < 2)</td>
<td></td>
</tr>
<tr>
<td>(x) is greater than 2</td>
<td>(x > 2)</td>
<td></td>
</tr>
<tr>
<td>(x) is less than or equal to 2</td>
<td>(x \leq 2)</td>
<td></td>
</tr>
<tr>
<td>(x) is greater than or equal to 2</td>
<td>(x \geq 2)</td>
<td></td>
</tr>
</tbody>
</table>
2.1 Exercises

Vocabulary and Core Concept Check

1. **COMPLETE THE SENTENCE** A mathematical sentence using the symbols <, >, ≤, or ≥ is called a(n) ________.

2. **VOCABULARY** Is 5 in the solution set of \(x + 3 > 8\)? Explain.

3. **ATTENDING TO PRECISION** Describe how to graph an inequality.

4. **DIFFERENT WORDS, SAME QUESTION** Which is different? Write “both” inequalities.

 \[w \text{ is greater than or equal to } -7\]
 \[w \text{ is no less than } -7\]
 \[w \text{ is no more than } -7\]
 \[w \text{ is at least } -7\]

Monitoring Progress and Modeling with Mathematics

In Exercises 5–12, write the sentence as an inequality. (See Example 1.)

5. A number \(x\) is greater than 3.

6. A number \(n\) plus 7 is less than or equal to 9.

7. Fifteen is no more than a number \(t\) divided by 5.

8. Three times a number \(w\) is less than 18.

9. One-half of a number \(y\) is more than 22.

10. Three is less than the sum of a number \(s\) and 4.

11. Thirteen is at least the difference of a number \(v\) and 1.

12. Four is no less than the quotient of a number \(x\) and 2.1.

13. **MODELING WITH MATHEMATICS** On a fishing trip, you catch two fish. The weight of the first fish is shown. The second fish weighs at least 0.5 pound more than the first fish. Write an inequality that represents the possible weights of the second fish.

14. **MODELING WITH MATHEMATICS** There are 430 people in a wave pool. Write an inequality that represents how many more people can enter the pool.

HOURS

Monday–Friday: 10 A.M.–6 P.M.
Saturday–Sunday: 10 A.M.–7 P.M.
Maximum Capacity: 600

In Exercises 15–24, tell whether the value is a solution of the inequality. (See Example 2.)

15. \(r + 4 > 8; r = 2\)

16. \(5 - x < 8; x = -3\)

17. \(3s \leq 19; s = -6\)

18. \(17 \geq 2y; y = 7\)

19. \(-1 > \frac{x}{2}; x = 3\)

20. \(\frac{4}{z} \geq 3; z = 2\)

21. \(14 \geq -2n + 4; n = -5\)

22. \(-5 \div (2s) < -1; s = 10\)

23. \(20 \leq \frac{10}{2z} + 20; z = 5\)

24. \(\frac{3m}{6} - 2 > 3; m = 8\)

25. **MODELING WITH MATHEMATICS** The tallest person who ever lived was approximately 8 feet 11 inches tall.

a. Write an inequality that represents the heights of every other person who has ever lived.

b. Is 9 feet a solution of the inequality? Explain.
26. **DRAWING CONCLUSIONS** The winner of a weight-lifting competition bench-pressed 400 pounds. The other competitors all bench-pressed at least 23 pounds less.

 a. Write an inequality that represents the weights that the other competitors bench-pressed.

 b. Was one of the other competitors able to bench-press 379 pounds? Explain.

ERROR ANALYSIS In Exercises 27 and 28, describe and correct the error in determining whether 8 is in the solution set of the inequality.

27. \(-y + 7 < -4\)

 \(-8 + 7 < -4\)

 \(-1 < -4\)

 \(8\) is in the solution set.

28. \(\frac{1}{2}x + 2 \leq 6\)

 \(\frac{1}{2}(8) + 2 \leq 6\)

 \(4 + 2 \leq 6\)

 \(6 \leq 6\)

 \(8\) is not in the solution set.

In Exercises 29–36, graph the inequality. *(See Example 3.)*

29. \(x \geq 2\)
30. \(z \leq 5\)
31. \(-1 > t\)
32. \(-2 < w\)
33. \(v \leq -4\)
34. \(s < 1\)
35. \(\frac{1}{4} < p\)
36. \(r \geq -|5|\)

In Exercises 37–40, write and graph an inequality for the given solution set.

37. \(\{x \mid x < 7\}\)
38. \(\{n \mid n \geq -2\}\)
39. \(\{z \mid 1.3 \leq z\}\)
40. \(\{w \mid 5.2 > w\}\)

In Exercises 41–44, write an inequality that represents the graph. *(See Example 4.)*

41.
42.
43.
44.

45. **ANALYZING RELATIONSHIPS** The water temperature of a swimming pool must be no less than 76°F. The temperature is currently 74°F. Which graph correctly shows how much the temperature needs to increase? Explain your reasoning.

(A)
(B)
(C)
(D)

46. **MODELING WITH MATHEMATICS** According to a state law for vehicles traveling on state roads, the maximum total weight of a vehicle and its contents depends on the number of axles on the vehicle. For each type of vehicle, write and graph an inequality that represents the possible total weights \(w\) (in pounds) of the vehicle and its contents.

<table>
<thead>
<tr>
<th>Maximum Total Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 axles, 40,000 lb</td>
</tr>
<tr>
<td>3 axles, 60,000 lb</td>
</tr>
<tr>
<td>4 axles, 80,000 lb</td>
</tr>
</tbody>
</table>

47. **PROBLEM SOLVING** The Xianren Bridge is located in Guangxi Province, China. This arch is the world’s longest natural arch, with a length of 400 feet. Write and graph an inequality that represents the lengths \(l\) (in inches) of all other natural arches.
48. THOUGHT PROVOKING A student works no more than 25 hours each week at a part-time job. Write an inequality that represents how many hours the student can work each day.

49. WRITING Describe a real-life situation modeled by the inequality $23 + x \leq 31$.

50. HOW DO YOU SEE IT? The graph represents the known melting points of all metallic elements (in degrees Celsius).

-38.93 -38.91 -38.89 -38.87 -38.85 -38.83

a. Write an inequality represented by the graph.

b. Is it possible for a metallic element to have a melting point of $-38.87^\circ C$? Explain.

51. DRAWING CONCLUSIONS A one-way ride on a subway costs $0.90. A monthly pass costs $24. Write an inequality that represents how many one-way rides you can buy before it is cheaper to buy the monthly pass. Is it cheaper to pay the one-way fare for 25 rides? Explain.

<table>
<thead>
<tr>
<th>Subway Prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way ride ..$0.90</td>
</tr>
<tr>
<td>Monthly pass ..$24.00</td>
</tr>
</tbody>
</table>

52. MAKING AN ARGUMENT The inequality $x \leq 1324$ represents the weights (in pounds) of all mako sharks ever caught using a rod and reel. Your friend says this means no one using a rod and reel has ever caught a mako shark that weighs 1324 pounds. Your cousin says this means someone using a rod and reel has caught a mako shark that weighs 1324 pounds. Who is correct? Explain your reasoning.

53. CRITICAL THINKING Describe a real-life situation that can be modeled by more than one inequality.

54. MODELING WITH MATHEMATICS In 1997, Superman’s cape from the 1978 movie Superman was sold at an auction. The winning bid was $17,000. Write and graph an inequality that represents the amounts all the losing bids.

55. The area is less than 42 square meters.

56. The area is greater than or equal to 8 square feet.

57. The area is less than 18 square centimeters.

58. The area is greater than 12 square inches.

59. WRITING A runner finishes a 200-meter dash in 35 seconds. Let r represent any speed (in meters per second) faster than the runner’s speed.

a. Write an inequality that represents r. Then graph the inequality.

b. Every point on the graph represents a speed faster than the runner’s speed. Do you think every point could represent the speed of a runner? Explain.

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Solve the equation. Check your solution. \(\text{(Section 1.1)} \)

60. $x + 2 = 3$

61. $y - 9 = 5$

62. $6 = 4 + y$

63. $-12 = y - 11$

Identify the property of equality that makes Equation 1 and 2 equivalent. \(\text{(Section 1.1)} \)

64. \begin{align*}
\text{Equation 1} & \quad 3x + 8 = x - 1 \\
\text{Equation 2} & \quad 3x + 9 = x
\end{align*}

65. \begin{align*}
\text{Equation 1} & \quad 4y = 28 \\
\text{Equation 2} & \quad y = 7
\end{align*}
2.2 Solving Inequalities Using Addition or Subtraction

Essential Question How can you use addition or subtraction to solve an inequality?

EXPLORATION 1 Quarterback Passing Efficiency

Work with a partner. The National Collegiate Athletic Association (NCAA) uses the following formula to rank the passing efficiencies P of quarterbacks.

$$ P = \frac{8.4Y + 100C + 330T - 200N}{A} $$

$Y =$ total length of all completed passes (in Yards) $C =$ Completed passes

$T =$ passes resulting in a Touchdown $N =$ Interceptions

$A =$ Attempted passes $M =$ Incomplete passes

Determine whether each inequality must be true. Explain your reasoning.

a. $T < C$

b. $C + N \leq A$

c. $N < A$

d. $A - C \geq M$

EXPLORATION 2 Finding Solutions of Inequalities

Work with a partner. Use the passing efficiency formula to create a passing record that makes each inequality true. Record your results in the table. Then describe the values of P that make each inequality true.

<table>
<thead>
<tr>
<th>Attempts</th>
<th>Completions</th>
<th>Yards</th>
<th>Touchdowns</th>
<th>Interceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. $P < 0$

b. $P + 100 \geq 250$

c. $P - 250 > -80$

Communicate Your Answer

3. How can you use addition or subtraction to solve an inequality?

4. Solve each inequality.

a. $x + 3 < 4$

b. $x - 3 \geq 5$

c. $4 > x - 2$

d. $-2 \leq x + 1$
What You Will Learn

- Solve inequalities using addition.
- Solve inequalities using subtraction.
- Use inequalities to solve real-life problems.

Solving Inequalities Using Addition

Just as you used the properties of equality to produce equivalent equations, you can use the properties of inequality to produce equivalent inequalities. **Equivalent inequalities** are inequalities that have the same solutions.

Core Concept

Addition Property of Inequality

Words Adding the same number to each side of an inequality produces an equivalent inequality.

Numbers

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 < 6</td>
<td>0 ≥ −7</td>
<td></td>
</tr>
<tr>
<td>+4</td>
<td>+4</td>
<td>+3</td>
</tr>
<tr>
<td>1 < 6</td>
<td>0 ≥ −7</td>
<td></td>
</tr>
</tbody>
</table>

Algebra

If \(a > b \), then \(a + c > b + c \). If \(a \geq b \), then \(a + c \geq b + c \).

If \(a < b \), then \(a + c < b + c \). If \(a \leq b \), then \(a + c \leq b + c \).

The diagram shows one way to visualize the Addition Property of Inequality when \(c > 0 \).

![Diagram showing the Addition Property of Inequality](image)

EXAMPLE 1 Solving an Inequality Using Addition

Solve \(x - 6 \geq -10 \). Graph the solution.

SOLUTION

\[
x - 6 \geq -10 \quad \text{Write the inequality.}
\]

\[
+6 \quad +6
\]

\[
x \geq -4 \quad \text{Add 6 to each side.}
\]

\[
x \geq -4 \quad \text{Simplify.}
\]

The solution is \(x \geq -4 \).

![Graph showing the solution](image)

REMEmber

To check this solution, substitute a few numbers to the left and right of \(-4\) into the original inequality.

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Solve the inequality. Graph the solution.

1. \(b - 2 > -9 \)
2. \(m - 3 \leq 5 \)
3. \(\frac{1}{4} > y - \frac{1}{4} \)
Solving Inequalities Using Subtraction

Core Concept

Subtraction Property of Inequality

Words Subtracting the same number from each side of an inequality produces an equivalent inequality.

Numbers

\[
\begin{align*}
-3 &\leq 1 \\
-5 &> -20 \\
-8 &\leq -4 \\
-7 &> -27 \\
\end{align*}
\]

Algebra

- If \(a > b \), then \(a - c > b - c \).
- If \(a \geq b \), then \(a - c \geq b - c \).
- If \(a < b \), then \(a - c < b - c \).
- If \(a \leq b \), then \(a - c \leq b - c \).

The diagram shows one way to visualize the Subtraction Property of Inequality when \(c > 0 \).

EXAMPLE 2 Solving an Inequality Using Subtraction

Solve each inequality. Graph the solution.

a. \(y + 8 \leq 5 \)

SOLUTION

- Write the inequality.
- Subtract 8 from each side. \(y \leq -3 \)
- Simplify.
- The solution is \(y \leq -3 \).

b. \(-8 < 1.4 + m \)

- Subtract 1.4 from each side. \(-9.4 < m \)
- Simplify.
- The solution is \(m > -9.4 \).

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Solve the inequality. Graph the solution.

4. \(k + 5 \leq -3 \)

5. \(\frac{5}{6} \leq z + \frac{1}{6} \)

6. \(p + 0.7 > -2.3 \)
Solving Real-Life Problems

EXAMPLE 3 Modeling with Mathematics

A circuit overloads at 1800 watts of electricity. You plug a microwave oven that uses 1100 watts of electricity into the circuit.

a. Write and solve an inequality that represents how many watts you can add to the circuit without overloading the circuit.

b. In addition to the microwave oven, which of the following appliances can you plug into the circuit at the same time without overloading the circuit?

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock radio</td>
<td>50</td>
</tr>
<tr>
<td>Blender</td>
<td>300</td>
</tr>
<tr>
<td>Hot plate</td>
<td>1200</td>
</tr>
<tr>
<td>Toaster</td>
<td>800</td>
</tr>
</tbody>
</table>

SOLUTION

1. **Understand the Problem** You know that the microwave oven uses 1100 watts out of a possible 1800 watts. You are asked to write and solve an inequality that represents how many watts you can add without overloading the circuit. You also know the numbers of watts used by four other appliances. You are asked to identify the appliances you can plug in at the same time without overloading the circuit.

2. **Make a Plan** Use a verbal model to write an inequality. Then solve the inequality and identify other appliances that you can plug into the circuit at the same time without overloading the circuit.

3. **Solve the Problem**

 Words

 Watts used by microwave oven + Additional watts < Overload wattage

 Variable

 Let w be the additional watts you can add to the circuit.

 Inequality

 \[1100 + w < 1800 \]

 Write the inequality.

 \[\begin{align*}
 -1100 & \quad \text{Subtract 1100 from each side.} \\
 -1100 & \quad \text{Simplify.}
 \end{align*} \]

 You can add up to 700 watts to the circuit, which means that you can also plug in the clock radio and the blender.

4. **Look Back** You can check that your answer is correct by adding the numbers of watts used by the microwave oven, clock radio, and blender.

 \[1100 + 50 + 300 = 1450 \]

 The circuit will not overload because the total wattage is less than 1800 watts.

Monitoring Progress

7. The microwave oven uses only 1000 watts of electricity. Does this allow you to have both the microwave oven and the toaster plugged into the circuit at the same time? Explain your reasoning.
Section 2.2 Solving Inequalities Using Addition or Subtraction

Vocabulary and Core Concept Check

1. **VOCABULARY** Why is the inequality \(x \leq 6 \) equivalent to the inequality \(x - 5 \leq 6 - 5 \)?

2. **WRITING** Compare solving equations using addition with solving inequalities using addition.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, tell which number you would add to or subtract from each side of the inequality to solve it.

3. \(k + 11 < -3 \)
 4. \(v - 2 > 14 \)

5. \(-1 \geq b - 9 \)
 6. \(-6 \leq 17 + p \)

In Exercises 7–20, solve the inequality. Graph the solution. (See Examples 1 and 2.)

7. \(x - 4 < -5 \)
 8. \(1 \leq s - 8 \)

9. \(6 \geq m - 1 \)
 10. \(c - 12 > -4 \)

11. \(r + 4 < 5 \)
 12. \(-8 \leq 8 + y \)

13. \(9 + w > 7 \)
 14. \(15 \geq q + 3 \)

15. \(h - (-2) \geq 10 \)
 16. \(-6 > t - (-13) \)

17. \(j + 9 - 3 < 8 \)
 18. \(1 - 12 + y \geq -5 \)

19. \(10 \geq 3p - 2p - 7 \)
 20. \(18 - 5z + 6z > 3 + 6 \)

In Exercises 21–24, write the sentence as an inequality. Then solve the inequality.

21. A number plus 8 is greater than 11.

22. A number minus 3 is at least \(-5\).

23. The difference of a number and 9 is fewer than 4.

24. Six is less than or equal to the sum of a number and 15.

25. **MODELING WITH MATHEMATICS** You are riding a train. Your carry-on bag can weigh no more than 50 pounds. Your bag weighs 38 pounds. (See Example 3.)
 a. Write and solve an inequality that represents how much weight you can add to your bag.
 b. Can you add both a 9-pound laptop and a 5-pound pair of boots to your bag without going over the weight limit? Explain.

26. **MODELING WITH MATHEMATICS** You order the hardcover book shown from a website that offers free shipping on orders of $25 or more. Write and solve an inequality that represents how much more you must spend to get free shipping.

 - Price: $19.76

 ERROR ANALYSIS In Exercises 27 and 28, describe and correct the error in solving the equation or graphing the solution.

27. \[-17 < x - 14 \]

 \[-17 + 14 < x - 14 + 14 \]

 \[-3 < x \]

28. \[-10 + x \geq -9 \]

 \[-10 + 10 + x \geq -9 \]

 \[x \geq -9 \]

29. **PROBLEM SOLVING** An NHL hockey player has 59 goals so far in a season. What are the possible numbers of additional goals the player can score to match or break the NHL record of 92 goals in a season?
34. **THOUGHT PROVOKING** Write an inequality that has the solution shown in the graph. Describe a real-life situation that can be modeled by the inequality.

![Graph with inequality]

35. **WRITING** Is it possible to check all the numbers in the solution set of an inequality? When you solve the inequality \(x - 11 \geq -3 \), which numbers can you check to verify your solution? Explain your reasoning.

36. **HOW DO YOU SEE IT?** The diagram represents the numbers of students in a school with brown eyes, brown hair, or both.

![Diagram showing overlapping circles]

Determine whether each inequality must be true. Explain your reasoning.

a. \(H \geq E \)
b. \(H + 10 \geq E \)
c. \(H \geq X \)
d. \(H + 10 \geq X \)
e. \(H > X \)
f. \(H + 10 > X \)

37. **REASONING** Write and graph an inequality that represents the numbers that are not solutions of each inequality.

a. \(x + 8 < 14 \)
b. \(x - 12 \geq 5.7 \)

38. **PROBLEM SOLVING** Use the inequalities \(c - 3 \geq d \), \(b + 4 < a + 1 \), and \(a - 2 \leq d - 7 \) to order \(a \), \(b \), \(c \), and \(d \) from least to greatest.

30. **MAKING AN ARGUMENT** In an aerial ski competition, you perform two acrobatic ski jumps. The scores on the two jumps are then added together.

<table>
<thead>
<tr>
<th>Ski jump</th>
<th>Competitor’s score</th>
<th>Your score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>117.1</td>
<td>119.5</td>
</tr>
<tr>
<td>2</td>
<td>119.8</td>
<td></td>
</tr>
</tbody>
</table>

a. Describe the score that you must earn on your second jump to beat your competitor.

b. Your coach says that you will beat your competitor if you score 118.4 points. A teammate says that you only need 117.5 points. Who is correct? Explain.

31. **REASONING** Which of the following inequalities are equivalent to the inequality \(x - b < 3 \), where \(b \) is a constant? Justify your answer.

\[A \quad x - b - 3 < 0 \quad B \quad 0 > b - x + 3 \]

\[C \quad x < 3 - b \quad D \quad -3 < b - x \]

32. Perimeter < 51.3 inches

33. Perimeter \(\leq \) 18.7 feet

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Find the product or quotient. (**Skills Review Handbook**)

39. \(7 \times (-9) \)
40. \(-11 \times (-12) \)
41. \(-27 \div (-3) \)
42. \(20 \div (-5) \)

Solve the equation. Check your solution. (**Section 1.1**)

43. \(6x = 24 \)
44. \(-3y = -18 \)
45. \(\frac{s}{-8} = 13 \)
46. \(\frac{n}{4} = -7.3 \)
Essential Question

How can you use division to solve an inequality?

EXPLORATION 1 Writing a Rule

Work with a partner.

a. Copy and complete the table. Decide which graph represents the solution of the inequality $6 < 3x$. Write the solution of the inequality.

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x$</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>$6 < 3x$</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Use a table to solve each inequality. Then write a rule that describes how to use division to solve the inequalities.

i. $2x < 4$

ii. $3 \geq 3x$

iii. $2x < 8$

iv. $6 \geq 3x$

EXPLORATION 2 Writing a Rule

Work with a partner.

a. Copy and complete the table. Decide which graph represents the solution of the inequality $6 < -3x$. Write the solution of the inequality.

<table>
<thead>
<tr>
<th>x</th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3x$</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>$6 < -3x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Use a table to solve each inequality. Then write a rule that describes how to use division to solve the inequalities.

i. $-2x < 4$

ii. $3 \geq -3x$

iii. $-2x < 8$

iv. $6 \geq -3x$

Communicate Your Answer

3. How can you use division to solve an inequality?

4. Use the rules you wrote in Explorations 1(b) and 2(b) to solve each inequality.

a. $7x < -21$

b. $12 \leq 4x$

c. $10 < -5x$

d. $-3x \leq 0$
2.3 Lesson

What You Will Learn

- Solve inequalities by multiplying or dividing by *positive* numbers.
- Solve inequalities by multiplying or dividing by *negative* numbers.
- Use inequalities to solve real-life problems.

Multiplying or Dividing by Positive Numbers

Core Concept

Multiplication and Division Properties of Inequality (c > 0)

Words
Multiplying or dividing each side of an inequality by the same *positive* number produces an equivalent inequality.

Numbers

- \(-6 \leq 8\)
 \(6 > -8\)
-
 \(2 \cdot (-6) < 2 \cdot 8\)
 \(6 > -8\)
-
 \(-12 < 16\)
 \(3 > -4\)

Algebra

If \(a > b\) and \(c > 0\), then \(ac > bc\). If \(a > b\) and \(c > 0\), then \(\frac{a}{c} > \frac{b}{c}\).

If \(a < b\) and \(c > 0\), then \(ac < bc\). If \(a < b\) and \(c > 0\), then \(\frac{a}{c} < \frac{b}{c}\).

These properties are also true for \(\leq\) and \(\geq\).

EXAMPLE 1

Multiplying or Dividing by Positive Numbers

Solve (a) \(\frac{x}{8} > -5\) and (b) \(-24 \geq 3x\). Graph each solution.

SOLUTION

(a) \(\frac{x}{8} > -5\)

Write the inequality.

\[8 \cdot \frac{x}{8} > 8 \cdot (-5)\]

Multiply each side by 8.

\[x > -40\]

Simplify.

The solution is \(x > -40\).

(b) \(-24 \geq 3x\)

Write the inequality.

\[-\frac{24}{3} \geq \frac{3x}{3}\]

Divide each side by 3.

\[-8 \geq x\]

Simplify.

The solution is \(x \leq -8\).

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Solve the inequality. Graph the solution.

1. \(\frac{n}{7} \geq -1\)
2. \(-6.4 \geq \frac{1}{5}w\)
3. \(4b \geq 36\)
4. \(-18 > 1.5q\)
Multiplying or Dividing by Negative Numbers

Example 2

Solve each inequality. Graph each solution.

a. \(2 < \frac{y}{-3}\)

SOLUTION

\[
2 < \frac{y}{-3}
\]

Write the inequality.

\[
-3 \cdot 2 > -3 \cdot \frac{y}{-3}
\]

Multiply each side by \(-3\). Reverse the inequality symbol.

\[
-6 > y
\]

Simplify.

\(-6\) is to the left of \(0\), so \(y\) is to the right of \(-6\).

Graph:

The solution is \(y < -6\).

b. \(-7y \leq -35\)

SOLUTION

\[
-7y \leq -35
\]

Write the inequality.

\[
\frac{-7y}{-7} \geq \frac{-35}{-7}
\]

Divide each side by \(-7\). Reverse the inequality symbol.

\[
y \geq 5
\]

Simplify.

\(5\) is to the right of \(0\), so \(y\) is to the left of \(5\).

Graph:

The solution is \(y \geq 5\).

Monitoring Progress

Solve the inequality. Graph the solution.

5. \(\frac{p}{-4} < 7\)

6. \(\frac{x}{-5} \leq -5\)

7. \(1 \geq -\frac{1}{10}z\)

8. \(-9m > 63\)

9. \(-2r \geq -22\)

10. \(-0.4y \geq -12\)
You earn $9.50 per hour at your summer job. Write and solve an inequality that represents the numbers of hours you need to work to buy a digital camera that costs $247.

SOLUTION

1. **Understand the Problem** You know your hourly wage and the cost of the digital camera. You are asked to write and solve an inequality that represents the numbers of hours you need to work to buy the digital camera.

2. **Make a Plan** Use a verbal model to write an inequality. Then solve the inequality.

3. **Solve the Problem**

 Words

 Hourly wage • Hours worked ≥ Cost of camera

 Variable

 Let \(n \) be the number of hours worked.

 Inequality

 \[
 9.5 \cdot n \geq 247
 \]

 Equation

 \[

 9.5n \geq 247

 \]

 Division Property of Inequality

 \[

 \frac{9.5n}{9.5} \geq \frac{247}{9.5}

 \]

 Simplify.

 \[

 n \geq 26

 \]

 You need to work at least 26 hours for your gross pay to be at least $247. If you have payroll deductions, such as Social Security taxes, you need to work more than 26 hours.

 Look Back You can use estimation to check that your answer is reasonable.

 \[

 \frac{247}{9.50} \div \frac{250}{10} = 25 \text{ h}

 \]

 Your hourly wage is about $10 per hour. So, to earn about $250, you need to work about 25 hours.

 Unit Analysis Each time you set up an equation or inequality to represent a real-life problem, be sure to check that the units balance.

 \[
 \frac{9.50}{\text{h}} \times 26 \text{h} = 247
 \]

 Monitoring Progress

 11. You have at most $3.65 to make copies. Each copy costs $0.25. Write and solve an inequality that represents the numbers of copies you can make.

 12. The maximum speed limit for a school bus is 55 miles per hour. Write and solve an inequality that represents the numbers of hours it takes to travel 165 miles in a school bus.
Section 2.3
Solving Inequalities Using Multiplication or Division

Vocabulary and Core Concept Check

1. **WRITING** Explain how solving \(2x < -8\) is different from solving \(-2x < 8\).

2. **OPEN-ENDED** Write an inequality that is solved using the Division Property of Inequality where the inequality symbol needs to be reversed.

Monitoring Progress and Modeling with Mathematics

Exercises 3–10, solve the inequality. Graph the solution. (See Example 1.)

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>(4x < 8)</td>
</tr>
<tr>
<td>4</td>
<td>(3y \leq -9)</td>
</tr>
<tr>
<td>5</td>
<td>(-20 \leq 10n)</td>
</tr>
<tr>
<td>6</td>
<td>(35 < 7t)</td>
</tr>
<tr>
<td>7</td>
<td>(\frac{x}{2} > -2)</td>
</tr>
<tr>
<td>8</td>
<td>(\frac{a}{4} < 10.2)</td>
</tr>
<tr>
<td>9</td>
<td>(20 \geq \frac{4}{5}w)</td>
</tr>
<tr>
<td>10</td>
<td>(-16 \leq \frac{8}{3}t)</td>
</tr>
</tbody>
</table>

Exercises 11–18, solve the inequality. Graph the solution. (See Example 2.)

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(-6t < 12)</td>
</tr>
<tr>
<td>12</td>
<td>(-9y > 9)</td>
</tr>
<tr>
<td>13</td>
<td>(-10 \geq -2z)</td>
</tr>
<tr>
<td>14</td>
<td>(-15 \leq -3e)</td>
</tr>
<tr>
<td>15</td>
<td>(\frac{n}{-3} \geq 1)</td>
</tr>
<tr>
<td>16</td>
<td>(\frac{w}{-5} \leq 16)</td>
</tr>
<tr>
<td>17</td>
<td>(-8 < \frac{1}{4}m)</td>
</tr>
<tr>
<td>18</td>
<td>(-6 > \frac{2}{3}y)</td>
</tr>
</tbody>
</table>

19. **MODELING WITH MATHEMATICS** You have $12 to buy five goldfish for your new fish tank. Write and solve an inequality that represents the prices you can pay per fish. (See Example 3.)

20. **MODELING WITH MATHEMATICS** A weather forecaster predicts that the temperature in Antarctica will decrease 8°F each hour for the next 6 hours. Write and solve an inequality to determine how many hours it will take for the temperature to drop at least 36°F.

21. **USING TOOLS** In Exercises 21–26, solve the inequality. Use a graphing calculator to verify your answer.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>(36 < 3y)</td>
</tr>
<tr>
<td>22</td>
<td>(17y \geq 51)</td>
</tr>
<tr>
<td>23</td>
<td>(2 \leq \frac{-2}{9}x)</td>
</tr>
<tr>
<td>24</td>
<td>(4 > \frac{n}{-4})</td>
</tr>
<tr>
<td>25</td>
<td>(2x > \frac{3}{4})</td>
</tr>
<tr>
<td>26</td>
<td>(1.1y < 4.4)</td>
</tr>
</tbody>
</table>

ERROR ANALYSIS In Exercises 27 and 28, describe and correct the error in solving the inequality.

27. The solution is \(x > -9\).

28. The solution is \(y \leq 8\).

29. **ATTENDING TO PRECISION** You have $700 to buy new carpet for your bedroom. Write and solve an inequality that represents the costs per square foot that you can pay for the new carpet. Specify the units of measure in each step.
30. **HOW DO YOU SEE IT?** Let \(m > 0 \). Match each inequality with its graph. Explain your reasoning.

 a. \(\frac{x}{m} < -1 \)
 b. \(\frac{x}{m} > 1 \)
 c. \(\frac{x}{m} < 1 \)
 d. \(-\frac{x}{m} < 1 \)

 A.
 B.
 C.
 D.

31. **MAKING AN ARGUMENT** You run for 2 hours at a speed no faster than 6.3 miles per hour.
 a. Write and solve an inequality that represents the possible numbers of miles you run.
 b. A marathon is approximately 26.2 miles. Your friend says that if you continue to run at this speed, you will not be able to complete a marathon in less than 4 hours. Is your friend correct? Explain.

32. **THOUGHT PROVOKING** The inequality \(\frac{x}{4} \leq 5 \) has a solution of \(x = p \). Write a second inequality that also has a solution of \(x = p \).

33. **PROBLEM SOLVING** The U.S. Mint pays $0.02 to produce every penny. How many pennies are produced when the U.S. Mint pays more than $6 million in production costs?

34. **REASONING** Are \(x \leq \frac{2}{3} \) and \(-3x \leq -2 \) equivalent? Explain your reasoning.

35. **ANALYZING RELATIONSHIPS** Consider the number line shown.

 a. Write an inequality relating \(A \) and \(B \).
 b. Write an inequality relating \(-A\) and \(-B\).
 c. Use the results from parts (a) and (b) to explain why the direction of the inequality symbol must be reversed when multiplying or dividing each side of an inequality by the same negative number.

36. **REASONING** Why might solving the inequality \(\frac{4}{x} \geq 2 \) by multiplying each side by \(x \) lead to an error? (Hint: Consider \(x > 0 \) and \(x < 0 \).)

37. **MATHEMATICAL CONNECTIONS** The radius of a circle is represented by the formula \(r = \frac{C}{2\pi} \). Write and solve an inequality that represents the possible circumferences \(C \) of the circle.

38. **CRITICAL THINKING** A water-skiing instructor recommends that a boat pulling a beginning skier has a speed less than 18 miles per hour. Write and solve an inequality that represents the possible distances \(d \) (in miles) that a beginner can travel in 45 minutes of practice time.

39. **CRITICAL THINKING** A local zoo employs 36 people to take care of the animals each day. At most, 24 of the employees work full time. Write and solve an inequality that represents the fraction of employees who work part time. Graph the solution.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Solve the equation. Check your solution. (Section 1.2 and Section 1.3)

40. \(5x + 3 = 13 \)
41. \(\frac{1}{2}y - 8 = -10 \)
42. \(-3n + 2 = 2n - 3 \)
43. \(\frac{1}{2}z + 4 = \frac{5}{2}z - 8 \)

Tell which number is greater. (Skills Review Handbook)

44. 0.8, 85%
45. \(\frac{16}{30} \), 50%
46. 120%, 0.12
47. 60%, \(\frac{2}{3} \)
2.1–2.3 What Did You Learn?

Core Vocabulary

inequality, p. 46
solution of an inequality, p. 47
solution set, p. 47

graph of an inequality, p. 48
equivalent inequalities, p. 54

Core Concepts

Section 2.1
Representing Linear Inequalities, p. 49

Section 2.2
Addition Property of Inequality, p. 54
Subtraction Property of Inequality, p. 55

Section 2.3
Multiplication and Division Properties of Inequality ($c > 0$), p. 60
Multiplication and Division Properties of Inequality ($c < 0$), p. 61

Mathematical Thinking

1. Explain the meaning of the inequality symbol in your answer to Exercise 47 on page 51. How did you know which symbol to use?

2. In Exercise 30 on page 58, why is it important to check the reasonableness of your answer in part (a) before answering part (b)?

3. Explain how considering the units involved in Exercise 29 on page 63 helped you answer the question.

Study Skills

Analyzing Your Errors

Application Errors

What Happens: You can do numerical problems, but you struggle with problems that have context.

How to Avoid This Error: Do not just mimic the steps of solving an application problem. Explain out loud what the question is asking and why you are doing each step. After solving the problem, ask yourself, “Does my solution make sense?”
Write the sentence as an inequality. *(Section 2.1)*

1. A number \(z \) minus 6 is greater than or equal to 11.
2. Twelve is no more than the sum of \(-1.5\) times a number \(w \) and 4.

Write an inequality that represents the graph. *(Section 2.1)*

3.

4.

Solve the inequality. Graph the solution. *(Section 2.2 and Section 2.3)*

5. \(9 + q \leq 15 \)
6. \(z - (-7) < 5 \)
7. \(-3 < y - 4 \)
8. \(3p \geq 18 \)
9. \(6 > \frac{w}{-2} \)
10. \(-20x > 5 \)

11. Three requirements for a lifeguard training course are shown. *(Section 2.1)*
 a. Write and graph three inequalities that represent the requirements.
 b. You can swim 250 feet, tread water for 6 minutes, and swim 35 feet underwater without taking a breath. Do you satisfy the requirements of the course? Explain.

12. The maximum volume of an American white pelican’s bill is about 700 cubic inches. A pelican scoops up 100 cubic inches of water. Write and solve an inequality that represents the additional volumes the pelican’s bill can contain. *(Section 2.2)*

13. The solution of \(x - a > 4 \) is \(x > 11 \). What is the value of \(a \)? *(Section 2.2)*

14. The area of the triangular garden must be less than 35 square feet. Write and solve an inequality that represents the value of \(b \). *(Section 2.3)*

15. A candidate for class president receives 57 votes, which is at least 30% of the total number of votes. Write and solve an inequality that represents the numbers of students who cast votes. *(Section 2.3)*
Essential Question
How can you solve a multi-step inequality?

EXPLORATION 1
Solving a Multi-Step Inequality

Work with a partner.

- Use what you already know about solving equations and inequalities to solve each multi-step inequality. Justify each step.
- Match each inequality with its graph. Use a graphing calculator to check your answer.

a. $2x + 3 \leq x + 5$

b. $-2x + 3 > x + 9$

c. $27 \geq 5x + 4x$

d. $-8x + 2x - 16 < -5x + 7x$

e. $3(x - 3) - 5x > -3x - 6$

f. $-5x - 6x \leq 8 - 8x - x$

JUSTIFYING STEPS
To be proficient in math, you need to justify each step in a solution and communicate your justification to others.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>

Communicate Your Answer

2. How can you solve a multi-step inequality?

3. Write two different multi-step inequalities whose solutions are represented by the graph.
What You Will Learn
- Solve multi-step inequalities.
- Use multi-step inequalities to solve real-life problems.

Solving Multi-Step Inequalities
To solve a multi-step inequality, simplify each side of the inequality, if necessary. Then use inverse operations to isolate the variable. Be sure to reverse the inequality symbol when multiplying or dividing by a negative number.

Example 1 Solving Multi-Step Inequalities

Solve each inequality. Graph each solution.

a. \(\frac{y}{-6} + 7 < 9 \)

SOLUTION

\[
\begin{align*}
\frac{y}{-6} + 7 &< 9 \\
\frac{y}{-6} &< 2 \\
-6 \cdot \frac{y}{-6} &> -6 \cdot 2 \\
y &> -12
\end{align*}
\]

The solution is \(y > -12 \).

b. \(2v - 4 \geq 8 \)

SOLUTION

\[
\begin{align*}
2v - 4 &\geq 8 \\
2v &\geq 12 \\
\frac{2v}{2} &\geq \frac{12}{2} \\
v &\geq 6
\end{align*}
\]

The solution is \(v \geq 6 \).

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Solve the inequality. Graph the solution.

1. \(4b - 1 < 7 \)
2. \(8 - 9c \geq -28 \)
3. \(\frac{n}{-2} + 11 > 12 \)
4. \(6 \geq 5 - \frac{v}{3} \)
EXAMPLE 2 Solving an Inequality with Variables on Both Sides

Solve \(6x - 5 < 2x + 11\).

SOLUTION

\[
6x - 5 < 2x + 11 \\
\begin{align*}
\quad &\quad + 5 \quad + 5 \\
6x &< 2x + 16 \\
\quad &\quad - 2x \quad - 2x \\
4x &< 16 \\
\quad &\quad \div 4 \\
x &< 4
\end{align*}
\]

The solution is \(x < 4\).

When solving an inequality, if you obtain an equivalent inequality that is true, such as \(-5 < 0\), the solutions of the inequality are all real numbers. If you obtain an equivalent inequality that is false, such as \(3 \leq -2\), the inequality has no solution.

EXAMPLE 3 Inequalities with Special Solutions

Solve (a) \(8b - 3 > 4(2b + 3)\) and (b) \(2(5w - 1) \leq 7 + 10w\).

SOLUTION

a. \(8b - 3 > 4(2b + 3)\)
\[
\begin{align*}
\quad &\quad - 8b \\
\quad &\quad - 8b \\
\quad &\quad -3 > 12 \\
\end{align*}
\]

The inequality \(-3 > 12\) is false. So, there is no solution.

b. \(2(5w - 1) \leq 7 + 10w\)
\[
\begin{align*}
\quad &\quad - 10w \\
\quad &\quad - 10w \\
\quad &\quad -2 \leq 7
\end{align*}
\]

The inequality \(-2 \leq 7\) is true. So, all real numbers are solutions.

ANALYZING MATHEMATICAL RELATIONSHIPS

When the variable terms on each side of an inequality are the same, the constant terms will determine whether the inequality is true or false.

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Solve the inequality.

5. \(5x - 12 \leq 3x - 4\)
6. \(2(k - 5) < 2k + 5\)

7. \(-4(3n - 1) > -12n + 5.2\)
8. \(3(2a - 1) \geq 10a - 11\)
Solving Real-Life Problems

EXAMPLE 4 Modeling with Mathematics

You need a mean score of at least 90 points to advance to the next round of the touch-screen trivia game. What scores in the fifth game will allow you to advance?

SOLUTION

1. **Understand the Problem** You know the scores of your first four games. You are asked to find the scores in the fifth game that will allow you to advance.

2. **Make a Plan** Use the definition of the mean of a set of numbers to write an inequality. Then solve the inequality and answer the question.

3. **Solve the Problem** Let \(x \) be your score in the fifth game.

\[
\frac{95 + 91 + 77 + 89 + x}{5} \geq 90
\]

Write an inequality.

\[
\frac{352 + x}{5} \geq 90
\]

Simplify.

\[
5 \cdot \frac{352 + x}{5} \geq 5 \cdot 90
\]

Multiply each side by 5.

\[
352 + x \geq 450
\]

Simplify.

\[
x \geq 98
\]

Simplify.

A score of at least 98 points will allow you to advance.

4. **Look Back** You can draw a diagram to check that your answer is reasonable. The horizontal bar graph shows the differences between the game scores and the desired mean of 90.

5. **Look Back** You can draw a diagram to check that your answer is reasonable. The horizontal bar graph shows the differences between the game scores and the desired mean of 90.

\[
5 + 1 - 13 - 1 + 8 = 0
\]

✓

EXTRA HELP Help in English and Spanish at BigIdeasMath.com

9. **WHAT IF?** You need a mean score of at least 85 points to advance to the next round. What scores in the fifth game will allow you to advance?
Vocabulary and Core Concept Check

1. **WRITING** Compare solving multi-step inequalities and solving multi-step equations.

2. **WRITING** Without solving, how can you tell that the inequality $4x + 8 \leq 4x - 3$ has no solution?

Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, match the inequality with its graph.

3. $7b - 4 \leq 10$
 4. $4p + 4 \geq 12$
5. $-6g + 2 \geq 20$
 6. $3(2 - f) \leq 15$

A.
 ![Graph A]

B.
 ![Graph B]

C.
 ![Graph C]

D.
 ![Graph D]

In Exercises 7–16, solve the inequality. Graph the solution. *(See Example 1.)*

7. $2x - 3 > 7$
 8. $5y - 9 \leq 4$
9. $-9 \leq 7 - 8v$
 10. $2 > -3t - 10$
11. $\frac{w}{2} + 4 > 5$
 12. $1 + \frac{m}{3} \leq 6$
13. $\frac{p}{-8} + 9 \geq 13$
 14. $3 + \frac{r}{-4} \leq 6$
15. $6 \geq -6(a + 2)$
 16. $18 \leq 3(b - 4)$

In Exercises 17–28, solve the inequality. *(See Examples 2 and 3.)*

17. $4 - 2m > 7 - 3m$
 18. $8n + 2 \leq 8n - 9$
19. $-2d - 2 < 3d + 8$
 20. $8 + 10f > 14 - 2f$
21. $8g - 5g - 4 \leq -3 + 3g$
22. $3w - 5 > 2w + w - 7$
23. $6(\ell + 3) < 3(2 \ell + 6)$
24. $2(5c - 7) \geq 10(c - 3)$
25. $4(\frac{1}{2}t - 2) > 2(t - 3)$
26. $15(\frac{1}{2}b + 3) \leq 6(b + 9)$
27. $9j - 6 + 6j \geq 3(5j - 2)$
28. $6h - 6 + 2h < 2(4h - 3)$

ERROR ANALYSIS In Exercises 29 and 30, describe and correct the error in solving the inequality.

29. $\frac{x}{4} + 6 \geq 3$

 $x + 6 \geq 12$

 $x \geq 6$

 ✗

30. $-2(1 - x) \leq 2x - 7$

 $-2 + 2x \leq 2x - 7$

 $-2 \leq -7$

 All real numbers are solutions.

 ✗

31. **MODELING WITH MATHEMATICS** Write and solve an inequality that represents how many $20 bills you can withdraw from the account without going below the minimum balance. *(See Example 4.)*

 ![Money Image]
32. **MODELING WITH MATHEMATICS**
A woodworker wants to earn at least $25 an hour making and selling cabinets. He pays $125 for materials. Write and solve an inequality that represents how many hours the woodworker can spend building the cabinet.

33. **MATHEMATICAL CONNECTIONS**
The area of the rectangle is greater than 60 square feet. Write and solve an inequality to find the possible values of x.

34. **MAKING AN ARGUMENT**
Forest Park Campgrounds charges a $100 membership fee plus $35 per night. Woodland Campgrounds charges a $20 membership fee plus $55 per night. Your friend says that if you plan to camp for four or more nights, then you should choose Woodland Campgrounds. Is your friend correct? Explain.

35. **PROBLEM SOLVING**
The height of one story of a building is about 10 feet. The bottom of the ladder on the fire truck must be at least 24 feet away from the building. How many stories can the ladder reach? Justify your answer.

36. **HOW DO YOU SEE IT?**
The graph shows your budget, and the total cost of x gallons of gasoline and a car wash. You want to determine the possible amounts (in gallons) of gasoline you can buy within your budget.

37. **PROBLEM SOLVING**
For what values of r will the area of the shaded region be greater than or equal to $9(\pi - 2)$?

38. **THOUGHT PROVOKING**
A runner’s times (in minutes) in the four races he has completed are 25.5, 24.3, 24.8, and 23.5. The runner plans to run at least one more race and wants to have an average time less than 24 minutes. Write and solve an inequality to show how the runner can achieve his goal.

39. **REASONING**
In Exercises 39 and 40, find the value of a for which the solution of the inequality is all real numbers.

40. $3x + 8 + 2ax \geq 3ax - 4a$

Maintaining Mathematical Proficiency
Reviewing what you learned in previous grades and lessons

41. Write the sentence as an inequality. (Section 2.1)
 - Six times a number y is less than or equal to 10.
 - A number p plus 7 is greater than 24.
 - The quotient of a number r and 7 is no more than 18.
2.5 Solving Compound Inequalities

Essential Question How can you use inequalities to describe intervals on the real number line?

Exploration 1 Describing Intervals on the Real Number Line

Work with a partner. In parts (a)–(d), use two inequalities to describe the interval.

a. Half-Open Interval

b. Half-Open Interval

c. Closed Interval

d. Open Interval

e. Do you use “and” or “or” to connect the two inequalities in parts (a)–(d)? Explain.

Exploration 2 Describing Two Infinite Intervals

Work with a partner. In parts (a)–(d), use two inequalities to describe the interval.

a.

b.

c.

d.

e. Do you use “and” or “or” to connect the two inequalities in parts (a)–(d)? Explain.

Communicate Your Answer

3. How can you use inequalities to describe intervals on the real number line?
What You Will Learn

- Write and graph compound inequalities.
- Solve compound inequalities.
- Use compound inequalities to solve real-life problems.

Core Vocabulary

Compound inequality, p. 74

Writing and Graphing Compound Inequalities

A **compound inequality** is an inequality formed by joining two inequalities with the word “and” or the word “or.”

The graph of a compound inequality with “and” is the **intersection** of the graphs of the inequalities. The graph shows numbers that are solutions of both inequalities.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \geq 2$</td>
<td></td>
</tr>
<tr>
<td>$x < 5$</td>
<td></td>
</tr>
<tr>
<td>$2 \leq x < 5$</td>
<td></td>
</tr>
</tbody>
</table>

The graph of a compound inequality with “or” is the **union** of the graphs of the inequalities. The graph shows numbers that are solutions of either inequality.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \leq -2$</td>
<td></td>
</tr>
<tr>
<td>$y > 1$</td>
<td></td>
</tr>
<tr>
<td>$y \leq -2$ or $y > 1$</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 1 Writing and Graphing Compound Inequalities

Write each sentence as an inequality. Graph each inequality.

a. A number x is greater than -8 and less than or equal to 4.

b. A number y is at most 0 or at least 2.

SOLUTION

a. A number x is greater than -8 and less than or equal to 4.

\[x > -8 \quad \text{and} \quad x \leq 4 \]

An inequality is $-8 < x \leq 4$.

Graph the intersection of the graphs of $x > -8$ and $x \leq 4$.

b. A number y is at most 0 or at least 2.

\[y \leq 0 \quad \text{or} \quad y \geq 2 \]

An inequality is $y \leq 0$ or $y \geq 2$.

Graph the union of the graphs of $y \leq 0$ and $y \geq 2$.

Monitoring Progress

Write the sentence as an inequality. Graph the inequality.

1. A number d is more than 0 and less than 10.

2. A number a is fewer than -6 or no less than -3.
Solving Compound Inequalities

You can solve a compound inequality by solving two inequalities separately. When a compound inequality with “and” is written as a single inequality, you can solve the inequality by performing the same operation on each expression.

EXAMPLE 2 Solving Compound Inequalities with “And”

Solve each inequality. Graph each solution.

a. \(-4 < x - 2 < 3\)

SOLUTION

Separate the compound inequality into two inequalities, then solve.

\[-4 < x - 2\]
\[x - 2 < 3\]

Add 2 to each side.

\[-2 < x\]
\[x < 5\]

The solution is \(-2 < x < 5\).

b. \(-3 < -2x + 1 \leq 9\)

SOLUTION

Write the inequality.

\[-3 < -2x + 1\]
\[\leq 9\]

Subtract 1 from each expression.

\[-4 < -2x\]

Simplify.

\[-2 > x\]

Divide each expression by \(-2\). Reverse each inequality symbol.

\[2 \geq x\]

The solution is \(-4 \leq x < 2\).

EXAMPLE 3 Solving a Compound Inequality with “Or”

Solve \(3y - 5 < -8\) or \(2y - 1 > 5\). Graph the solution.

SOLUTION

\[3y - 5 < -8\]
\[\text{or}\]
\[2y - 1 > 5\]

Write the inequality.

Addition Property of Inequality

\[3y < -3\]
\[+5\]
\[2y > 6\]

Addition Property of Inequality

\[y < -1\]
\[\text{or}\]
\[y > 3\]

The solution is \(y < -1\) or \(y > 3\).

Monitoring Progress Help in English and Spanish at BigIdeasMath.com

Solve the inequality. Graph the solution.

3. \(5 \leq m + 4 < 10\)
4. \(-3 < 2k - 5 < 7\)
5. \(4c + 3 \leq -5\) or \(c - 8 > -1\)
6. \(2p + 1 < -7\) or \(3 - 2p \leq -1\)
Solving Real-Life Problems

EXAMPLE 4 Modeling with Mathematics

Electrical devices should operate effectively within a specified temperature range. Outside the operating temperature range, the device may fail.

a. Write and solve a compound inequality that represents the possible operating temperatures (in degrees Fahrenheit) of the smartphone.

b. Describe one situation in which the surrounding temperature could be below the operating range and one in which it could be above.

SOLUTION

1. **Understand the Problem** You know the operating temperature range in degrees Celsius. You are asked to write and solve a compound inequality that represents the possible operating temperatures (in degrees Fahrenheit) of the smartphone. Then you are asked to describe situations outside this range.

2. **Make a Plan** Write a compound inequality in degrees Celsius. Use the formula $C = \frac{5}{9}(F - 32)$ to rewrite the inequality in degrees Fahrenheit. Then solve the inequality and describe the situations.

3. **Solve the Problem** Let C be the temperature in degrees Celsius, and let F be the temperature in degrees Fahrenheit.

 $0 \leq C \leq 35$

 Write the inequality using C.

 $0 \leq \frac{5}{9}(F - 32) \leq 35$

 Substitute $\frac{5}{9}(F - 32)$ for C.

 $9 \cdot 0 \leq 9 \cdot \frac{5}{9}(F - 32) \leq 9 \cdot 35$

 Multiply each expression by 9.

 $0 \leq 5(F - 32) \leq 315$

 Simplify.

 $0 \leq 5F - 160 \leq 315$

 Distributive Property

 \[+ 160 \quad + 160 \quad + 160\]

 Add 160 to each expression.

 $160 \leq 5F \leq 475$

 Simplify.

 $\frac{160}{5} \leq \frac{5F}{5} \leq \frac{475}{5}$

 Divide each expression by 5.

 $32 \leq F \leq 95$

 Simplify.

 The solution is $32 \leq F \leq 95$. So, the operating temperature range of the smartphone is 32°F to 95°F. One situation when the surrounding temperature could be below this range is winter in Alaska. One situation when the surrounding temperature could be above this range is daytime in the Mojave Desert of the American Southwest.

4. **Look Back** You can use the formula $C = \frac{5}{9}(F - 32)$ to check that your answer is correct. Substitute 32 and 95 for F in the formula to verify that 0°C and 35°C are the minimum and maximum operating temperatures in degrees Celsius.

Monitoring Progress Help in English and Spanish at BigIdeasMath.com

7. Write and solve a compound inequality that represents the temperature rating (in degrees Fahrenheit) of the winter boots.

STUDY TIP

You can also solve the inequality by multiplying each expression by $\frac{9}{5}$.

Operating temperature: 0°C to 35°C

Winter boots: -40°C to 15°C
In Exercises 3–6, write a compound inequality that is represented by the graph.

3.

4.

5.

6.

In Exercises 7–10, write the sentence as an inequality. Graph the inequality. (See Example 1.)

7. A number \(p \) is less than 6 and greater than 2.

8. A number \(n \) is less than or equal to \(-7\) or greater than 12.

9. A number \(m \) is more than \(-7\frac{2}{3}\) or at most \(-10\).

10. A number \(r \) is no less than \(-1.5\) and fewer than 9.5.

11. **MODELING WITH MATHEMATICS**

 Slitsnails are large mollusks that live in deep waters. They have been found in the range of elevations shown. Write and graph a compound inequality that represents this range.

12. **MODELING WITH MATHEMATICS** The life zones on Mount Rainier, a mountain in Washington, can be approximately classified by elevation, as follows.

 Low-elevation forest: above 1700 feet to 2500 feet
 Mid-elevation forest: above 2500 feet to 4000 feet
 Subalpine: above 4000 feet to 6500 feet
 Alpine: above 6500 feet to the summit

 Write a compound inequality that represents the elevation range for each type of plant life.

 a. trees in the low-elevation forest zone
 b. flowers in the subalpine and alpine zones

In Exercises 13–20, solve the inequality. Graph the solution. (See Examples 2 and 3.)

13. \(6 < x + 5 \leq 11 \)

14. \(24 > -3r \geq -9 \)

15. \(v + 8 < 3 \quad or \quad -8v < -40 \)

16. \(-14 > w + 3 \quad or \quad 3w \geq -27 \)

17. \(2r + 3 < 7 \quad or \quad -r + 9 \leq 2 \)

18. \(-6 < 3n + 9 < 21 \)

19. \(-12 < \frac{1}{2}(4x + 16) < 18 \)

20. \(35 < 7(2 - b) \quad or \quad \frac{1}{3}(15b - 12) \geq 21 \)
ERROR ANALYSIS In Exercises 21 and 22, describe and correct the error in solving the inequality or graphing the solution.

21. \[4 < -2x + 3 < 9\]
\[4 < -2x < 6\]
\[-2 > x > -3\]

22. \[x - 2 > 3\] or \[x + 8 < -2\]
\[x > 5\] or \[x < -10\]

23. MODELING WITH MATHEMATICS Write and solve a compound inequality that represents the possible temperatures (in degrees Fahrenheit) of the interior of the iceberg. (See Example 4.)

24. PROBLEM SOLVING A ski shop sells skis with lengths ranging from 150 centimeters to 220 centimeters. The shop says the length of the skis should be about 1.16 times a skier’s height (in centimeters). Write and solve a compound inequality that represents the heights of skiers the shop does not provide skis for.

In Exercises 25–30, solve the inequality. Graph the solution, if possible.

25. \[22 < -3c + 4 < 14\]
26. \[2m - 1 \geq 5\] or \[5m > -25\]
27. \[-y + 3 \leq 8\] and \[y + 2 > 9\]
28. \[x - 8 \leq 4\] or \[2x + 3 > 9\]
29. \[2n + 19 \leq 10 + n\] or \[-3n + 3 > -2n + 33\]
30. \[3x - 18 < 4x - 23\] and \[x - 16 < -22\]
31. REASONING Fill in the compound inequality \[4(x - 6) < 2(x - 10)\] and \[5(x + 2) \geq 2(x + 8)\] with <, ≤, >, or ≥ so that the solution is only one value.

32. THOUGHT PROVOKING Write a real-life story that can be modeled by the graph.

33. MAKING AN ARGUMENT The sum of the lengths of any two sides of a triangle is greater than the length of the third side. Use the triangle shown to write and solve three inequalities. Your friend claims the value of \(x\) can be 1. Is your friend correct? Explain.

34. HOW DO YOU SEE IT? The graph shows the annual profits of a company from 2006 to 2013.

a. Write a compound inequality that represents the annual profits from 2006 to 2013.
b. You can use the formula \(P = R - C\) to find the profit \(P\), where \(R\) is the revenue and \(C\) is the cost. From 2006 to 2013, the company’s annual cost was about $125 million. Is it possible the company had an annual revenue of $160 million from 2006 to 2013? Explain.

Maintaining Mathematical Proficiency

Plot the ordered pair in a coordinate plane. Describe the location of the point. (Skills Review Handbook)

35. \((1, 3)\)
36. \((0, -3)\)
37. \((-4, -2)\)
38. \((-1, 2)\)

Find and interpret the mean absolute deviation of the data. (Skills Review Handbook)

39. \(1, 1, 2, 5, 6, 8, 10, 12, 12, 13\)
40. \(24, 26, 28, 28, 30, 30, 32, 32, 34, 36\)
What Did You Learn?

Core Vocabulary

compound inequality, p. 74

Core Concepts

Section 2.4
Solving Multi-Step Inequalities, p. 68
Special Solutions of Linear Inequalities, p. 69

Section 2.5
Writing and Graphing Compound Inequalities, p. 74
Solving Compound Inequalities, p. 75

Mathematical Thinking

1. How can you use a diagram to help you solve Exercise 12 on page 77?

2. In Exercises 13 and 14 on page 77, how can you use structure to break down the compound inequality into two inequalities?

Performance Task

Grading Calculations

You are not doing as well as you had hoped in one of your classes. So, you want to figure out the minimum grade you need on the final exam to receive the semester grade that you want. Is it still possible to get an A? How would you explain your calculations to a classmate?

To explore the answers to these questions and more, go to BigIdeasMath.com.
2.1 Writing and Graphing Inequalities (pp. 45–52)

a. A number \(x \) plus 36 is no more than 40. Write this sentence as an inequality.

\[
\text{A number } x \text{ plus 36 is no more than 40.}
\]

\[
x + 36 \leq 40
\]

An inequality is \(x + 36 \leq 40 \).

b. Graph \(w > -3 \).

Test a number to the left of \(-3\). \(w = -4 \) is not a solution.

Test a number to the right of \(-3\). \(w = 0 \) is a solution.

Write the sentence as an inequality.

1. A number \(d \) minus 2 is less than \(-1\).
2. Ten is at least the product of a number \(h \) and 5.

Graph the inequality.

3. \(x > 4 \)
4. \(y \leq 2 \)
5. \(-1 \geq z \)

2.2 Solving Inequalities Using Addition or Subtraction (pp. 53–58)

Solve \(x + 2.5 \leq -6 \). Graph the solution.

\[
x + 2.5 \leq -6 \quad \text{Write the inequality.}
\]

\[
-2.5 \quad -2.5
\]

\[
x \leq -8.5 \quad \text{Subtract 2.5 from each side.}
\]

The solution is \(x \leq -8.5 \).

Solve the inequality. Graph the solution.

6. \(p + 4 < 10 \)
7. \(r - 4 < -6 \)
8. \(2.1 \geq m - 6.7 \)
Solving Multi-Step Inequalities (pp. 67–72)

Solve $22 + 3y \geq 4$. Graph the solution.

\[
\begin{align*}
22 + 3y & \geq 4 \\
-22 & \\
3y & \geq -18 \\
\frac{3y}{3} & \geq \frac{-18}{3} \\
y & \geq -6
\end{align*}
\]

The solution is $y \geq -6$.

Solve the inequality. Graph the solution, if possible.

15. $3x - 4 > 11$
16. $-4 < \frac{b}{2} + 9$
17. $7 - 3n \leq n + 3$
18. $2(-4s + 2) \geq -5s - 10$
19. $6(2t + 9) \leq 12t - 1$
20. $3r - 8 > 3(r - 6)$
a. A number \(m \) is less than 10 or at least 20. Write this sentence as an inequality.

Graph the inequality.

\[
\text{A number } m \text{ is less than 10 or at least 20.}
\]

\[
m < 10 \text{ or } m \geq 20
\]

An inequality is \(m < 10 \text{ or } m \geq 20 \).

![Graph showing inequality]

b. Solve \(-1 \leq -2d + 7 \leq 9\). Graph the solution.

\[
\begin{align*}
-1 &\leq -2d + 7 \leq 9 \\
-7 &\leq -2d \leq 2 \\
\frac{-7}{-2} &\geq \frac{-2d}{-2} \geq \frac{2}{-2}
\end{align*}
\]

Write the inequality.

Subtract 7 from each expression.

Simplify.

Divide each expression by \(-2\).

Reverse each inequality symbol.

Simplify.

The solution is \(-1 \leq d \leq 4\).

![Graph showing solution]

c. Solve \(2y - 3 \leq -5 \text{ or } 3y - 1 > 8\). Graph the solution.

\[
\begin{align*}
2y - 3 &\leq -5 \quad \text{or} \quad 3y - 1 > 8 \\
+3 &\quad +3 \quad +1 \quad +1 \\
2y &\leq -2 \quad 3y > 9 \\
\frac{2y}{2} &\leq \frac{-2}{2} \quad \frac{3y}{3} > \frac{9}{3} \\
y &\leq -1 \quad \text{or} \quad y > 3
\end{align*}
\]

Write the inequality.

Addition Property of Inequality

Simplify.

Division Property of Inequality

Simplify.

The solution is \(y \leq -1 \text{ or } y > 3\).

![Graph showing solution]

21. A number \(x \) is more than \(-6\) and at most 8. Write this sentence as an inequality. Graph the inequality.

Solve the inequality. Graph the solution.

22. \(4 > x - 7 > -6\)

23. \(2x + 2 \leq 4 \text{ or } x + 2 \geq 5\)

24. \(19 \geq 3z + 1 \geq -5\)

25. \(\frac{r}{4} < -5 \text{ or } -2r - 7 \leq 3\)
Write the sentence as an inequality.

1. The sum of a number \(y \) and 9 is at least \(-1\).
2. A number \(r \) is more than 0 or less than or equal to \(-8\).
3. A number \(k \) is less than 3 units from 10.

Solve the inequality. Graph the solution, if possible.

4. \(\frac{x}{2} - 5 \geq -9 \)
5. \(-4s < 6s + 1\)
6. \(4p + 3 \geq 2(2p + 1)\)
7. \(3y - 7 \geq 17\)
8. \(8(3g - 2) \leq 12(2g + 1)\)
9. \(6(2x - 1) \geq 3(4x + 1)\)
10. \(-7 < 2c - 1 < 10\)
11. \(-2 \leq 4 - 3a \leq 13\)
12. \(-5 < 2 - h \text{ or } 6h + 5 > 71\)

13. You start a small baking business, and you want to earn a profit of at least $250 in the first month. The expenses in the first month are $155. What are the possible revenues that you need to earn to meet the profit goal?

14. Let \(a, b, c, \) and \(d \) be constants. Describe the possible solution sets of the inequality \(ax + b < cx + d \).

Write and graph a compound inequality that represents the numbers that are not solutions of the inequality represented by the graph shown. Explain your reasoning.

15. [Graph]
16. [Graph]

17. You save $15 per week to purchase one of the bikes shown.
 a. Write and solve an inequality to find the number of weeks you need to save to purchase a bike.
 b. Your parents give you $65 to help you buy the new bike. How does this affect your answer in part (a)? Use an inequality to justify your answer.

18. A state imposes a sales tax on items of clothing that cost more than $175. The tax applies only to the difference of the price of the item and $175.
 a. Use the receipt shown to find the tax rate (as a percent).
 b. A shopper has $430 to spend on a winter coat. Write and solve an inequality to find the prices \(p \) of coats that the shopper can afford. Assume that \(p \geq 175\).
 c. Another state imposes a 5% sales tax on the entire price of an item of clothing. For which prices would paying the 5% tax be cheaper than paying the tax described above? Write and solve an inequality to find your answer and list three prices that are solutions.
1. The triangle shown has a perimeter of 82 inches. What is the value of \(x \)? \((TEKS A.5.A)\)
 - A 3.4
 - B 4.0
 - C 7.1
 - D 42.0

2. The sum of 5 times a number \(b \) and 8 is no less than \(b \). Which inequality describes \(b \)? \((TEKS A.5.B)\)
 - F \(b > -2 \)
 - G \(b < -2 \)
 - H \(b \geq -2 \)
 - J \(b \leq -2 \)

3. A skating park charges $7 per session to skate and $4 per session to rent safety equipment. Your friend rents safety equipment every time he skates. Last year, he spent $99 total for skating charges and equipment rentals. How much did he pay to rent safety equipment last year? \((TEKS A.5.A)\)
 - A $4
 - B $9
 - C $11
 - D $36

4. GRIDDED ANSWER The cost \(C \) of parking in a parking garage is given by the equation
 \[C = 2(x - 2) + 3, \]
 where \(x \) is the amount of time in hours. You need to spend less than $10 for parking. What is the maximum whole number of hours you can park in the garage? \((TEKS A.5.B)\)

5. The volume \(V \) of a cylinder is given by the formula \(V = \pi r^2 h \). Solve the formula for \(h \). \((TEKS A.12.E)\)
 - F \(h = V - \pi r^2 \)
 - G \(h = -\frac{V}{\pi r^2} \)
 - H \(h = \frac{V}{\pi r} \)
 - J \(h = \frac{V}{\pi r^2} \)

6. The area of a rectangle is given by \(3(x - 17) - x + 19 \). Which inequality represents the possible values of \(x \)? \((TEKS A.5.B)\)
 - A \(x \geq 16 \)
 - B \(x > -16 \)
 - C \(x > 16 \)
 - D \(-16 < x < 16 \)
7. What is the solution of $8x + 2x = 15x - 10$? (TEKS A.5.A)
 - $x = -2$
 - $x = 5$

8. In 1862, the United States imposed a tax on annual income to pay for the expenses of the Civil War. The table shows the tax rates for different incomes. Which compound inequality describes the range of incomes x (in dollars) for which the tax was between $450 and $600? (TEKS A.5.B)

<table>
<thead>
<tr>
<th>Annual income</th>
<th>Tax rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$600 to $10,000</td>
<td>3% of income</td>
</tr>
<tr>
<td>Greater than $10,000</td>
<td>3% of first $10,000 plus 5% of income over $10,000</td>
</tr>
</tbody>
</table>

 - $3000 \leq x \leq 6000$
 - $9000 \leq x \leq 12,000$
 - $13,000 \leq x \leq 16,000$
 - $15,000 \leq x \leq 20,000$

9. What is the solution of $4y + y + 1 = 7(y - 1)$? (TEKS A.5.A)
 - $y = 4$
 - $y = 3$
 - $y = -3$
 - $y = -4$

10. The solution set of which inequality is represented by the graph? (TEKS A.5.B)
 - $4x + 1 \leq 2(x - 1) - 1$
 - $4x + 1 \geq 2(x - 1) - 1$
 - $4x - 1 \leq 2(x + 1) + 1$
 - None of the above

11. A plumber charges $64 per hour for labor and x dollars for replacement parts. The total bill is $284 and includes 3 hours of labor. How much does the plumber charge for the replacement parts? (TEKS A.5.A)
 - 22
 - 92
 - 24
 - 118

12. When $2(a + b) + a$ is negative, which statement must be true? (TEKS A.5.B)
 - $a < 0, b < 0$
 - $a < 0, b > 0$
 - $a < -\frac{2}{3}b$
 - $a < b$