5.2 Logarithms and Logarithmic Functions

Essential Question What are some of the characteristics of the graph of a logarithmic function?

Every exponential function of the form $f(x) = b^x$, where b is a positive real number other than 1, has an inverse function that you can denote by $g(x) = \log_b x$. This inverse function is called a *logarithmic function with base b*.

EXPLORATION 1

Rewriting Exponential Equations

Work with a partner. Find the value of x in each exponential equation. Explain your reasoning. Then use the value of x to rewrite the exponential equation in its equivalent logarithmic form, $x = \log_b y$.

a.
$$2^x = 8$$

b.
$$3^x = 9$$

c.
$$4^x = 2$$

d.
$$5^x = 1$$

e.
$$5^x = \frac{1}{5}$$

f.
$$8^x = 4$$

EXPLORATION 2

Graphing Exponential and Logarithmic Functions

Work with a partner. Complete each table for the given exponential function. Use the results to complete the table for the given logarithmic function. Explain your reasoning. Then sketch the graphs of f and g in the same coordinate plane.

a.
$$x = -2 = -1 = 0 = 1 = 2$$
 $f(x) = 2^x$

$$g(x) = \log_2 x \qquad -2 \qquad -1 \qquad 0 \qquad 1 \qquad 2$$

b.
$$x -2 -1 0 1 2$$
 $f(x) = 10^x$

X					
$g(x) = \log_{10} x$	-2	-1	0	1	2

CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to justify your conclusions and communicate them to others.

EXPLORATION 3

Characteristics of Graphs of Logarithmic Functions

Work with a partner. Use the graphs you sketched in Exploration 2 to determine the domain, range, *x*-intercept, and asymptote of the graph of $g(x) = \log_b x$, where *b* is a positive real number other than 1. Explain your reasoning.

Communicate Your Answer

- **4.** What are some of the characteristics of the graph of a logarithmic function?
- **5.** How can you use the graph of an exponential function to obtain the graph of a logarithmic function?

Lesson

Core Vocabulary

logarithm of y with base b, p. 258 common logarithm, p. 259 natural logarithm, p. 259

Previous

inverse functions

What You Will Learn

- Define and evaluate logarithms.
- Use inverse properties of logarithmic and exponential functions.
- Graph logarithmic functions.

Logarithms

You know that $2^2 = 4$ and $2^3 = 8$. However, for what value of x does $2^x = 6$? Mathematicians define this x-value using a *logarithm* and write $x = \log_2 6$. The definition of a logarithm can be generalized as follows.

G Core Concept

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log_b y$ and is defined as

$$\log_b y = x$$
 if and only if $b^x = y$.

The expression $\log_b y$ is read as "log base b of y."

This definition tells you that the equations $\log_b y = x$ and $b^x = y$ are equivalent. The first is in *logarithmic form*, and the second is in *exponential form*.

EXAMPLE 1 Rewriting Logarithmic Equations

Rewrite each equation in exponential form.

a.
$$\log_2 16 = 4$$

b.
$$\log_4 1 = 0$$

$$c. \log_{12} 12 = 1$$

c.
$$\log_{12} 12 = 1$$
 d. $\log_{1/4} 4 = -1$

SOLUTION

Logarithmic Form Exponential Form

a.
$$\log_2 16 = 4$$

$$2^4 = 16$$

b.
$$\log_4 1 = 0$$

$$4^0 = 1$$

$$c. \log_{12} 12 = 1$$

$$12^1 = 12$$

d.
$$\log_{1/4} 4 = -1$$

$$\left(\frac{1}{4}\right)^{-1} = 4$$

EXAMPLE 2 **Rewriting Exponential Equations**

Rewrite each equation in logarithmic form.

a.
$$5^2 = 25$$

b.
$$10^{-1} = 0.1$$

c.
$$8^{2/3} = 4$$

b.
$$10^{-1} = 0.1$$
 c. $8^{2/3} = 4$ **d.** $6^{-3} = \frac{1}{216}$

SOLUTION

Exponential Form

a.
$$5^2 = 25$$

$$\log_5 25 = 2$$

b.
$$10^{-1} = 0.1$$

$$\log_{10} 0.1 = -1$$

Logarithmic Form

c.
$$8^{2/3} = 4$$

$$\log_8 4 = \frac{2}{3}$$

d.
$$6^{-3} = \frac{1}{216}$$

$$\log_6 \frac{1}{216} = -3$$

258

Parts (b) and (c) of Example 1 illustrate two special logarithm values that you should learn to recognize. Let b be a positive real number such that $b \neq 1$.

Logarithm of 1

Logarithm of b with Base b

$$\log_b 1 = 0$$
 because $b^0 = 1$.

 $\log_b b = 1$ because $b^1 = b$.

EXAMPLE 3

Evaluating Logarithmic Expressions

Evaluate each logarithm.

b.
$$\log_5 0.2$$

$$\mathbf{c.} \log_{1/5} 125$$

SOLUTION

To help you find the value of $\log_b y$, ask yourself what power of b gives you y.

$$4^3 = 64$$
, so $\log_4 64 = 3$.

$$5^{-1} = 0.2$$
, so $\log_5 0.2 = -1$.

c. What power of
$$\frac{1}{5}$$
 gives you 125?

$$\left(\frac{1}{5}\right)^{-3} = 125$$
, so $\log_{1/5} 125 = -3$.

$$36^{1/2} = 6$$
, so $\log_{36} 6 = \frac{1}{2}$.

A **common logarithm** is a logarithm with base 10. It is denoted by \log_{10} or simply by log. A **natural logarithm** is a logarithm with base e. It can be denoted by \log_e but is usually denoted by ln.

Common Logarithm

Natural Logarithm

$$\log_{10} x = \log x$$

$$\log_e x = \ln x$$

EXAMPLE 4

Evaluating Common and Natural Logarithms

Evaluate (a) log 8 and (b) ln 0.3 using a calculator. Round your answer to three decimal places.

SOLUTION

Most calculators have keys for evaluating common and natural logarithms.

a.
$$\log 8 \approx 0.903$$

b.
$$\ln 0.3 \approx -1.204$$

Check your answers by rewriting each logarithm in exponential form and evaluating.

.2999918414

7.99834255

10^(0.903)

e^(-1.204)

Check

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Rewrite the equation in exponential form.

1.
$$\log_3 81 = 4$$

2.
$$\log_7 7 = 1$$

3.
$$\log_{14} 1 = 0$$

3.
$$\log_{14} 1 = 0$$
 4. $\log_{1/2} 32 = -5$

Rewrite the equation in logarithmic form.

5.
$$7^2 = 49$$

6.
$$50^0 = 1$$

7.
$$4^{-1} = \frac{1}{4}$$

8.
$$256^{1/8} = 2$$

Evaluate the logarithm. If necessary, use a calculator and round your answer to three decimal places.

10.
$$\log_{27} 3$$

Using Inverse Properties

By the definition of a logarithm, it follows that the logarithmic function $g(x) = \log_b x$ is the inverse of the exponential function $f(x) = b^x$. This means that

$$g(f(x)) = \log_b b^x = x$$
 and $f(g(x)) = b^{\log_b x} = x$.

In other words, exponential functions and logarithmic functions "undo" each other.

EXAMPLE 5 Using Inverse Properties

Simplify (a) $10^{\log 4}$ and (b) $\log_5 25^x$.

SOLUTION

a.
$$10^{\log 4} = 4$$

$$b^{\log_b x} = x$$

b.
$$\log_5 25^x = \log_5 (5^2)^x$$

Express 25 as a power with base 5.

$$= \log_5 5^{2x}$$

Power of a Power Property

$$=2x$$

$$\log_b b^x = x$$

EXAMPLE 6 Finding Inverse Functions

Find the inverse of each function.

a.
$$f(x) = 6^x$$

b.
$$y = \ln(x + 3)$$

SOLUTION

a. From the definition of logarithm, the inverse of $f(x) = 6^x$ is $g(x) = \log_6 x$.

$$y = \ln(x + 3)$$

Write original function.

$$x = \ln(y + 3)$$

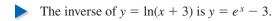
Switch x and y.

$$e^{x} = y + 3$$

Write in exponential form.

$$e^{x} - 3 = y$$

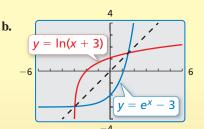
Subtract 3 from each side.



Check

a.
$$f(g(x)) = 6^{\log_6 x} = x$$

$$g(f(x)) = \log_6 6^x = x$$



The graphs appear to be reflections of each other in the line y = x.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com

Simplify the expression.

13.
$$8^{\log_8 x}$$

14.
$$\log_7 7^{-3x}$$

15.
$$\log_2 64^x$$

16.
$$e^{\ln 20}$$

17. Find the inverse of
$$y = 4^x$$
.

18. Find the inverse of
$$y = \ln(x - 5)$$
.

Graphing Logarithmic Functions

You can use the inverse relationship between exponential and logarithmic functions to graph logarithmic functions.

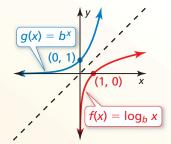
S Core Concept

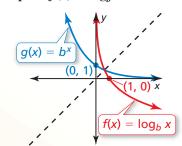
Parent Graphs for Logarithmic Functions

The graph of $f(x) = \log_b x$ is shown below for b > 1 and for 0 < b < 1. Because $f(x) = \log_b x$ and $g(x) = b^x$ are inverse functions, the graph of $f(x) = \log_b x$ is the reflection of the graph of $g(x) = b^x$ in the line y = x.

Graph of $f(x) = \log_b x$ for b > 1

Graph of $f(x) = \log_b x$ for 0 < b < 1





Note that the y-axis is a vertical asymptote of the graph of $f(x) = \log_b x$. The domain of $f(x) = \log_b x$ is x > 0, and the range is all real numbers.

EXAMPLE 7

Graphing a Logarithmic Function

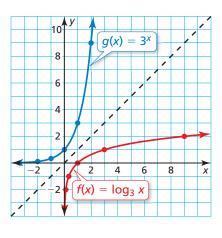
Graph $f(x) = \log_3 x$.

SOLUTION

- **Step 1** Find the inverse of f. From the definition of logarithm, the inverse of $f(x) = \log_3 x \text{ is } g(x) = 3^x.$
- **Step 2** Make a table of values for $g(x) = 3^x$.

x	-2	-1	0	1	2
g(x)	1/9	$\frac{1}{3}$	1	3	9

- **Step 3** Plot the points from the table and connect them with a smooth curve.
- **Step 4** Because $f(x) = \log_3 x$ and $g(x) = 3^x$ are inverse functions, the graph of f is obtained by reflecting the graph of g in the line y = x. To do this, reverse the coordinates of the points on g and plot these new points on the graph of f.



Monitoring Progress

Help in English and Spanish at BigldeasMath.com

Graph the function.

19.
$$y = \log_2 x$$

20.
$$f(x) = \log_5 x$$

21.
$$y = \log_{1/2} x$$

Vocabulary and Core Concept Check

- 1. COMPLETE THE SENTENCE A logarithm with base 10 is called a(n) _____ logarithm.
- 2. **COMPLETE THE SENTENCE** The expression log₃ 9 is read as _____.
- **3.** WRITING Describe the relationship between $y = 7^x$ and $y = \log_7 x$.
- **DIFFERENT WORDS, SAME QUESTION** Which is different? Find "both" answers.

What power of 4 gives you 16?

What is log base 4 of 16?

Evaluate 4^2 .

Evaluate $\log_4 16$.

Monitoring Progress and Modeling with Mathematics

In Exercises 5–10, rewrite the equation in exponential **form.** (See Example 1.)

5.
$$\log_3 9 = 2$$

6.
$$\log_4 4 = 1$$

7.
$$\log_{c} 1 = 0$$

7.
$$\log_6 1 = 0$$
 8. $\log_7 343 = 3$

9.
$$\log_{1/2} 16 = -4$$
 10. $\log_3 \frac{1}{3} = -1$

10.
$$\log_3 \frac{1}{2} = -1$$

In Exercises 11–16, rewrite the equation in logarithmic form. (See Example 2.)

11.
$$6^2 = 36$$

12.
$$12^0 = 1$$

13.
$$16^{-1} = \frac{1}{16}$$
 14. $5^{-2} = \frac{1}{25}$

14.
$$5^{-2} = \frac{1}{25}$$

15.
$$125^{2/3} = 25$$

16.
$$49^{1/2} = 7$$

In Exercises 17–24, evaluate the logarithm.

(See Example 3.)

20.
$$\log_{1/2} 1$$

21.
$$\log_5 \frac{1}{625}$$

22.
$$\log_8 \frac{1}{512}$$

23.
$$\log_4 0.25$$

24.
$$\log_{10} 0.001$$

25. NUMBER SENSE Order the logarithms from least value to greatest value.

$$\log_5 23$$

$$\log_6 38$$

$$log_7 8$$

$$\log_2 10$$

26. WRITING Explain why the expressions $log_2(-1)$ and log₁ 1 are not defined.

In Exercises 27–32, evaluate the logarithm using a calculator. Round your answer to three decimal places.

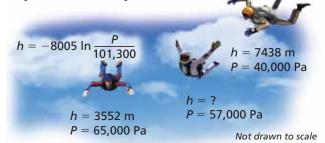
(See Example 4.)

29.
$$\ln \frac{1}{3}$$

30.
$$\log \frac{2}{7}$$

32.
$$\log 0.6 + 1$$

33. MODELING WITH MATHEMATICS Skydivers use an instrument called an *altimeter* to track their altitude as they fall. The altimeter determines altitude by measuring air pressure. The altitude h (in meters) above sea level is related to the air pressure P (in pascals) by the function shown in the diagram. What is the altitude above sea level when the air pressure is 57,000 pascals?



- **34. MODELING WITH MATHEMATICS** The pH value for a substance measures how acidic or alkaline the substance is. It is given by the formula $pH = -\log[H^+]$, where H⁺ is the hydrogen ion concentration (in moles per liter). Find the pH of each substance.
 - **a.** baking soda: $[H^+] = 10^{-8}$ moles per liter
 - **b.** vinegar: $[H^+] = 10^{-3}$ moles per liter

In Exercises 35–40, simplify the expression.

(See Example 5.)

35. $7^{\log_7 x}$

36. $3\log_3 5x$

37. $e^{\ln 4}$

38. 10^{log 15}

39. $\log_3 3^{2x}$

40. $\ln e^{x+1}$

41. ERROR ANALYSIS Describe and correct the error in rewriting $4^{-3} = \frac{1}{64}$ in logarithmic form.

$$\log_4(-3) = \frac{1}{64}$$

42. ERROR ANALYSIS Describe and correct the error in simplifying the expression $\log_4 64^x$.

$$\log_4 64^{x} = \log_4 (16 \cdot 4^{x})$$
$$= \log_4 (4^2 \cdot 4^{x})$$
$$= \log_4 4^{2+x}$$

$$= \log_4 4^{2+x}$$

$$= 2 + x$$

In Exercises 43-52, find the inverse of the function. (See Example 6.)

43.
$$v = 0.3^x$$

44.
$$y = 11^x$$

45.
$$y = \log_2 x$$

46.
$$y = \log_{1/5} x$$

47.
$$y = \ln(x - 1)$$

48.
$$y = \ln 2x$$

49.
$$y = e^{3x}$$

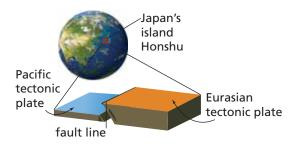
50.
$$y = e^{x-4}$$

51.
$$y = 5^x - 9$$

52.
$$y = 13 + \log x$$

- **53. PROBLEM SOLVING** The wind speed *s* (in miles per hour) near the center of a tornado can be modeled by $s = 93 \log d + 65$, where d is the distance (in miles) that the tornado travels.
 - a. In 1925, a tornado traveled 220 miles through three states. Estimate the wind speed near the center of the tornado.
 - **b.** Find the inverse of the given function. Describe what the inverse represents.

54. MODELING WITH MATHEMATICS The energy magnitude M of an earthquake can be modeled by $M = \frac{2}{3} \log E - 9.9$, where E is the amount of energy released (in ergs).



- a. In 2011, a powerful earthquake in Japan, caused by the slippage of two tectonic plates along a fault, released 2.24×10^{28} ergs. What was the energy magnitude of the earthquake?
- **b.** Find the inverse of the given function. Describe what the inverse represents.

In Exercises 55–60, graph the function. (See Example 7.)

55.
$$y = \log_4 x$$

56.
$$y = \log_6 x$$

57.
$$y = \log_{1/3} x$$

58.
$$y = \log_{1/4} x$$

59.
$$y = \log_2 x - 1$$

60.
$$y = \log_3(x+2)$$

USING TOOLS In Exercises 61–64, use a graphing calculator to graph the function. Determine the domain, range, and asymptote of the function.

61.
$$y = \log(x + 2)$$

62.
$$y = -\ln x$$

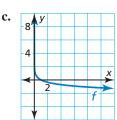
63.
$$y = \ln(-x)$$

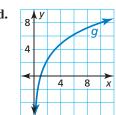
64.
$$y = 3 - \log x$$

- 65. MAKING AN ARGUMENT Your friend states that every logarithmic function of the form $y = \log_b x$ will pass through the point (1, 0). Is your friend correct? Explain your reasoning.
- **66. ANALYZING RELATIONSHIPS** Rank the functions in order from the least average rate of change to the greatest average rate of change over the interval $1 \le x \le 10.$

a.
$$y = \log_6 x$$

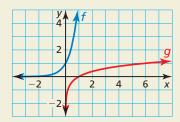
b.
$$y = \log_{3/5} x$$





67. PROBLEM SOLVING Biologists have found that the length ℓ (in inches) of an alligator and its weight w (in pounds) are related by the function $\ell = 27.1 \ln w - 32.8.$

- **a.** Use a graphing calculator to graph the function.
- **b.** Use your graph to estimate the weight of an alligator that is 10 feet long.
- **c.** Use the *zero* feature to find the *x*-intercept of the graph of the function. Does this x-value make sense in the context of the situation? Explain.
- **68. HOW DO YOU SEE IT?** The figure shows the graphs of the two functions f and g.



- a. Compare the end behavior of the logarithmic function g to that of the exponential function f.
- **b.** Determine whether the functions are inverse functions. Explain.
- **c.** What is the base of each function? Explain.

69. PROBLEM SOLVING A study in Florida found that the number s of fish species in a pool or lake can be modeled by the function

$$s = 30.6 - 20.5 \log A + 3.8(\log A)^2$$

where A is the area (in square meters) of the pool or lake.

- **a.** Use a graphing calculator to graph the function on the domain $200 \le A \le 35,000$.
- **b.** Use your graph to estimate the number of species in a lake with an area of 30,000 square meters.
- c. Use your graph to estimate the area of a lake that contains six species of fish.
- **d.** Describe what happens to the number of fish species as the area of a pool or lake increases. Explain why your answer makes sense.
- 70. THOUGHT PROVOKING Write a logarithmic function that has an output of -4. Then sketch the graph of your function.
- **71. CRITICAL THINKING** Evaluate each logarithm. (*Hint*: For each logarithm $\log_b x$, rewrite b and x as powers of the same base.)

a.
$$\log_{125} 25$$

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Let $f(x) = \sqrt[3]{x}$. Write a rule for g that represents the indicated transformation of the graph of f. (Section 4.3)

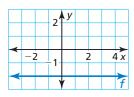
72.
$$g(x) = -f(x)$$

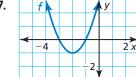
73.
$$g(x) = f(\frac{1}{2}x)$$

74.
$$g(x) = f(-x) + 3$$

75.
$$g(x) = f(x+2)$$

Identify the function family to which f belongs. Compare the graph of f to the graph of its parent function. (Section 2.1)





78.

