11

Circumference, Area, and Volume

Maintaining Mathematical Proficiency

Finding Surface Area

Example 1 Find the surface area of the prism.

$$
\begin{aligned}
S & =2 \ell w+2 \ell h+2 w h \\
& =2(2)(4)+2(2)(6)+2(4)(6) \\
& =16+24+48 \\
& =88
\end{aligned}
$$

The surface area is 88 square inches.
Find the surface area of the prism.
1.

2.

3.

Finding a Missing Dimension

Example 2 A rectangle has a perimeter of 10 meters and a length of 3 meters. What is the width of the rectangle?

$$
\begin{array}{rlrl}
P & =2 \ell+2 w & \text { Write formula for perimeter of a rectangle. } \\
10 & =2(3)+2 w & & \text { Substitute } 10 \text { for } P \text { and } 3 \text { for } \ell . \\
10 & =6+2 w & & \text { Multiply } 2 \text { and } 3 . \\
4 & =2 w & & \text { Subtract } 6 \text { from each side. } \\
2 & =w & & \text { Divide each side by } 2 . \\
\text { The width is } 2 \text { meters. } & &
\end{array}
$$

Find the missing dimension.

4. A rectangle has a perimeter of 28 inches and a width of 5 inches. What is the length of the rectangle?
5. A triangle has an area of 12 square centimeters and a height of 12 centimeters. What is the base of the triangle?
6. A rectangle has an area of 84 square feet and a width of 7 feet. What is the length of the rectangle?
7. ABSTRACT REASONING Write an equation for the surface area of a prism with a length, width, and height of x inches. What solid figure does the prism represent?

Mathematical Practices

Mathematically proficient students create valid representations of problems.

Creating a Valid Representation

G) Core Concept

Nets for Three-Dimensional Figures

A net for a three-dimensional figure is a two-dimensional pattern that can be folded to form the three-dimensional figure.

EXAMPLE 1 Drawing a Net for a Pyramid

Draw a net of the pyramid.

SOLUTION

The pyramid has a square base. Its four lateral faces are congruent isosceles triangles.

Monitoring Progress

Draw a net of the three-dimensional figure. Label the dimensions.
1.

2.

3.

10 in.

Circumference and Arc Length

Essential Question

EXPLORATION 1 Finding the Length of a Circular Arc

Work with a partner. Find the length of each red circular arc.
a. entire circle

b. one-fourth of a circle

c. one-third of a circle

d. five-eighths of a circle

EXPLORATION 2 Using Arc Length

Work with a partner. The rider is attempting to stop with the front tire of the motorcycle in the painted rectangular box for a skills test. The front tire makes exactly one-half additional revolution before stopping. The diameter of the tire is 25 inches. Is the front tire still in contact with the painted box? Explain.

Communicate Your Answer

3. How can you find the length of a circular arc?
4. A motorcycle tire has a diameter of 24 inches. Approximately how many inches does the motorcycle travel when its front tire makes three-fourths of a revolution?

11.1 Lesson

Core Vocabulary

circumference, p. 640
arc length, p. 641
radian, p. 643

Previous

circle
diameter
radius

What You Will Learn

Use the formula for circumference.

- Use arc lengths to find measures.
$>$ Solve real-life problems.
$>$ Measure angles in radians.

Using the Formula for Circumference

The circumference of a circle is the distance around the circle. Consider a regular polygon inscribed in a circle. As the number of sides increases, the polygon approximates the circle and the ratio of the perimeter of the polygon to the diameter of the circle approaches $\pi \approx 3.14159$. ...

For all circles, the ratio of the circumference C to the diameter d is the same. This ratio is $\frac{C}{d}=\pi$. Solving for C yields the formula for the circumference of a circle, $C=\pi d$. Because $d=2 r$, you can also write the formula as $C=\pi(2 r)=2 \pi r$.

G) Core Concept

Circumference of a Circle

The circumference C of a circle is $C=\pi d$ or $C=2 \pi r$, where d is the diameter of the circle and r is the radius of the circle.

$$
C=\pi d=2 \pi r
$$

EXAMPLE 1 Using the Formula for Circumference

Find each indicated measure.
a. circumference of a circle with a radius of 9 centimeters
b. radius of a circle with a circumference of 26 meters

SOLUTION

a. $C=2 \pi r$
$=2 \cdot \pi \cdot 9$
$=18 \pi$
≈ 56.55
b. $\quad C=2 \pi r$
$26=2 \pi r$
$\frac{26}{2 \pi}=r$
$4.14 \approx r$
The circumference is about 56.55 centimeters.

The radius is about 4.14 meters.

Monitoring Progress

1. Find the circumference of a circle with a diameter of 5 inches.
2. Find the diameter of a circle with a circumference of 17 feet.

Using Arc Lengths to Find Measures

An arc length is a portion of the circumference of a circle. You can use the measure of the arc (in degrees) to find its length (in linear units).

G) Core Concept

Arc Length

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$$
\begin{aligned}
& \frac{\text { Arc length of } \overparen{A B}}{2 \pi r}=\frac{m \overparen{A B}}{360^{\circ}}, \text { or } \\
& \text { Arc length of } \overparen{A B}=\frac{m \overparen{A B}}{360^{\circ}} \cdot 2 \pi r
\end{aligned}
$$

EXAMPLE 2 Using Arc Lengths to Find Measures

Find each indicated measure.
a. arc length of $\overparen{A B}$
b. circumference of $\odot Z$
c. $m \overparen{R S}$

SOLUTION

a. Arc length of $\overparen{A B}=\frac{60^{\circ}}{360^{\circ}} \cdot 2 \pi(8)$

$$
\approx 8.38 \mathrm{~cm}
$$

b. $\frac{\text { Arc length of } \overparen{X Y}}{C}=\frac{m \overparen{X Y}}{360^{\circ}}$
c. $\frac{\text { Arc length of } \overparen{R S}}{2 \pi r}=\frac{m \overparen{R S}}{360^{\circ}}$

$$
\frac{4.19}{C}=\frac{40^{\circ}}{360^{\circ}}
$$

$$
\frac{44}{2 \pi(15.28)}=\frac{m \overparen{R S}}{360^{\circ}}
$$

$$
\frac{4.19}{C}=\frac{1}{9}
$$

$$
360^{\circ} \cdot \frac{44}{2 \pi(15.28)}=m \overparen{R S}
$$

$$
37.71 \text { in. }=C
$$

$$
165^{\circ} \approx m \overparen{R S}
$$

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
Find the indicated measure.
3. arc length of $\overparen{P Q}$

4. circumference of $\odot N$

5. radius of $\odot G$

COMMON ERROR

Always pay attention to units. In Example 3, you need to convert units to get a correct answer.

Solving Real-Life Problems

EXAMPLE 3 Using Circumference to Find Distance Traveled

The dimensions of a car tire are shown. To the nearest foot, how far does the tire travel when it makes 15 revolutions?

SOLUTION

Step 1 Find the diameter of the tire.

$$
d=15+2(5.5)=26 \mathrm{in}
$$

Step 2 Find the circumference of the tire.

$$
C=\pi d=\pi \cdot 26=26 \pi \mathrm{in}
$$

Step 3 Find the distance the tire travels in 15 revolutions. In one revolution, the tire travels a distance equal to its circumference. In 15 revolutions, the tire travels a distance equal to 15 times its circumference.

$$
\begin{aligned}
\begin{array}{c}
\text { Distance } \\
\text { traveled }
\end{array} & =\begin{array}{c}
\text { Number of } \\
\text { revolutions }
\end{array} \\
& =15 \cdot 26 \pi \approx 1225.2 \mathrm{in} .
\end{aligned}
$$

Step 4 Use unit analysis. Change 1225.2 inches to feet.

$$
1225.2 \mathrm{in} . \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in} .}=102.1 \mathrm{ft}
$$

The tire travels approximately 102 feet.

EXAMPLE 4 Using Arc Length to Find Distances

The curves at the ends of the track shown are 180° arcs of circles. The radius of the arc for a runner on the red path shown is 36.8 meters. About how far does this runner travel to go once around the track? Round to the nearest tenth of a meter.

SOLUTION

The path of the runner on the red path is made of two straight sections and two semicircles. To find the total distance, find the sum of the lengths of each part.

$$
\begin{aligned}
\text { Distance } & =\begin{array}{c}
2 \cdot \text { Length of each } \\
\text { straight section }
\end{array}+\begin{array}{c}
2 \cdot \text { Length of } \\
\text { each semicircle }
\end{array} \\
& =2(84.39)+2\left(\frac{1}{2} \cdot 2 \pi \cdot 36.8\right) \\
& \approx 400.0
\end{aligned}
$$

The runner on the red path travels about 400.0 meters.

Monitoring Progress

6. A car tire has a diameter of 28 inches. How many revolutions does the tire make while traveling 500 feet?
7. In Example 4, the radius of the arc for a runner on the blue path is 44.02 meters, as shown in the diagram. About how far does this runner travel to go once around the track? Round to the nearest tenth of a meter.

Measuring Angles in Radians

Recall that in a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°. To see why, consider the diagram.

A circle of radius 1 has circumference 2π, so the arc length of $\overparen{C D}$ is $\frac{m \widehat{C D}}{360^{\circ}} \cdot 2 \pi$.

Recall that all circles are similar and corresponding lengths
 of similar figures are proportional. Because $m \overparen{A B}=m \overparen{C D}$, $\overparen{A B}$ and $\overparen{C D}$ are corresponding arcs. So, you can write the following proportion.

$$
\frac{\text { Arc length of } \overparen{A B}}{\text { Arc length of } \overparen{C D}}=\frac{r}{1}
$$

Arc length of $\overparen{A B}=r \cdot$ Arc length of $\overparen{C D}$
Arc length of $\overparen{A B}=r \cdot \frac{m \overparen{C D}}{360^{\circ}} \cdot 2 \pi$
This form of the equation shows that the arc length associated with a central angle is proportional to the radius of the circle. The constant of proportionality, $\frac{m \overline{C D}}{360^{\circ}} \cdot 2 \pi$, is defined to be the radian measure of the central angle associated with the arc.

In a circle of radius 1, the radian measure of a given central angle can be thought of as the length of the arc associated with the angle. The radian measure of a complete circle $\left(360^{\circ}\right)$ is exactly 2π radians, because the circumference of a circle of radius 1 is exactly 2π. You can use this fact to convert from degree measure to radian measure and vice versa.

G) Core Concept

Converting between Degrees and Radians

Degrees to radians

Multiply degree measure by

$$
\frac{2 \pi \text { radians }}{360^{\circ}} \text {, or } \frac{\pi \text { radians }}{180^{\circ}}
$$

Radians to degrees

Multiply radian measure by

$$
\frac{360^{\circ}}{2 \pi \text { radians }} \text {, or } \frac{180^{\circ}}{\pi \text { radians }}
$$

EXAMPLE 5 Converting between Degree and Radian Measure

a. Convert 45° to radians.
b. Convert $\frac{3 \pi}{2}$ radians to degrees.

SOLUTION

a. $45^{\circ} \cdot \frac{\pi \text { radians }}{180^{\circ}}=\frac{\pi}{4}$ radian
b. $\frac{3 \pi}{2}$ radians $\cdot \frac{180^{\circ}}{\pi \text { radians }}=270^{\circ}$
So, $45^{\circ}=\frac{\pi}{4}$ radian.
So, $\frac{3 \pi}{2}$ radians $=270^{\circ}$.

Monitoring Progress

8. Convert 15° to radians.
9. Convert $\frac{4 \pi}{3}$ radians to degrees.

11.1 Exercises

- Vocabulary and Core Concept Check

1. COMPLETE THE SENTENCE The circumference of a circle with diameter d is $C=$ \qquad .
2. WRITING Describe the difference between an arc measure and an arc length.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-10, find the indicated measure.

(See Examples 1 and 2.)
3. circumference of a circle with a radius of 6 inches
4. diameter of a circle with a circumference of 63 feet
5. radius of a circle with a circumference of 28π
6. exact circumference of a circle with a diameter of 5 inches
7. arc length of $\overparen{A B}$

9. circumference of $\odot C$

8. $m \overparen{D E}$

10. radius of $\odot R$

11. ERROR ANALYSIS Describe and correct the error in finding the circumference of $\odot C$.

$$
\begin{aligned}
C & =2 \pi r \\
& =2 \pi(9) \\
& =18 \pi \mathrm{in.}
\end{aligned}
$$

12. ERROR ANALYSIS Describe and correct the error in finding the length of $\widehat{G H}$.

Arc length of $\widehat{G H}$

$$
=m \widehat{G H} \cdot 2 \pi r
$$

$$
=75 \cdot 2 \pi(5)
$$

$$
=750 \pi \mathrm{~cm}
$$

13. PROBLEM SOLVING A measuring wheel is used to calculate the length of a path. The diameter of the wheel is 8 inches.
The wheel makes 87 complete revolutions along the length of the path. To the nearest foot, how long is the path? (See Example 3.)
14. PROBLEM SOLVING You ride your bicycle 40 meters. How many complete revolutions does the front wheel make?

In Exercises 15-18, find the perimeter of the shaded region. (See Example 4.)
15.

16.

17.

18.

In Exercises 19-22, convert the angle measure. (See Example 5.)
19. Convert 70° to radians.
20. Convert 300° to radians.
21. Convert $\frac{11 \pi}{12}$ radians to degrees.
22. Convert $\frac{\pi}{8}$ radian to degrees.
23. PROBLEM SOLVING The London Eye is a Ferris wheel in London, England, that travels at a speed of 0.26 meter per second. How many minutes does it take the London Eye to complete one full revolution?

24. PROBLEM SOLVING You are planning to plant a circular garden adjacent to one of the corners of a building, as shown. You can use up to 38 feet of fence to make a border around the garden. What radius (in feet) can the garden have? Choose all that apply. Explain your reasoning.

(A) 7
(B) 8
(C) 9
(D) 10

In Exercises 25 and 26, find the circumference of the circle with the given equation. Write the circumference in terms of π.
25. $x^{2}+y^{2}=16$
26. $(x+2)^{2}+(y-3)^{2}=9$
27. USING STRUCTURE A semicircle has endpoints $(-2,5)$ and $(2,8)$. Find the arc length of the semicircle.
28. REASONING $\overparen{E F}$ is an arc on a circle with radius r. Let x° be the measure of $\overparen{E F}$. Describe the effect on the length of $\overparen{E F}$ if you (a) double the radius of the circle, and (b) double the measure of $\overparen{E F}$.
29. MAKING AN ARGUMENT Your friend claims that it is possible for two arcs with the same measure to have different arc lengths. Is your friend correct? Explain your reasoning.
30. PROBLEM SOLVING Over 2000 years ago, the Greek scholar Eratosthenes estimated Earth's circumference by assuming that the Sun's rays were parallel. He chose a day when the Sun shone straight down into a well in the city of Syene. At noon, he measured the angle the Sun's rays made with a vertical stick in the city of Alexandria. Eratosthenes assumed that the distance from Syene to Alexandria was equal to about 575 miles. Explain how Eratosthenes was able to use this information to estimate Earth's circumference. Then estimate Earth's circumference.

31. ANALYZING RELATIONSHIPS In $\odot C$, the ratio of the length of $\overparen{P Q}$ to the length of $\overparen{R S}$ is 2 to 1 . What is the ratio of $m \angle P C Q$ to $m \angle R C S$?
(A) 4 to 1
(B) 2 to 1
(C) 1 to 4
(D) 1 to 2
32. ANALYZING RELATIONSHIPS A 45° arc in $\odot C$ and a 30° arc in $\odot P$ have the same length. What is the ratio of the radius r_{1} of $\odot C$ to the radius r_{2} of $\odot P$? Explain your reasoning.
33. PROBLEM SOLVING How many revolutions does the smaller gear complete during a single revolution of the larger gear?

34. USING STRUCTURE Find the circumference of each circle.
a. a circle circumscribed about a right triangle whose legs are 12 inches and 16 inches long
b. a circle circumscribed about a square with a side length of 6 centimeters
c. a circle inscribed in an equilateral triangle with a side length of 9 inches
35. REWRITING A FORMULA Write a formula in terms of the measure θ of the central angle (in radians) that can be used to find the length of an arc of a circle. Then use this formula to find the length of an arc of a circle with a radius of 4 inches and a central angle of $\frac{3 \pi}{4}$ radians.
36. HOW DO YOU SEE IT?

Compare the circumference of $\odot P$ to the length of $\overparen{D E}$. Explain your reasoning.

37. MAKING AN ARGUMENT In the diagram, the measure of the red shaded angle is 30°. The arc length a is 2 . Your classmate claims that it is possible to find the circumference of the blue circle without finding the radius of either circle. Is your classmate correct? Explain your reasoning.

38. MODELING WITH MATHEMATICS What is the measure (in radians) of the angle formed by the hands of a clock at each time? Explain your reasoning.
a. 1:30 р.М.
b. 3:15 P.M.
39. MATHEMATICAL CONNECTIONS The sum of the circumferences of circles A, B, and C is 63π. Find $A C$.

40. THOUGHT PROVOKING Is π a rational number? Compare the rational number $\frac{355}{113}$ to π. Find a different rational number that is even closer to π.
41. PROOF The circles in the diagram are concentric and $\overline{F G} \cong \overline{G H}$. Prove that $\overparen{J K}$ and $\overparen{N G}$ have the same length.

42. REPEATED REASONING $\overline{A B}$ is divided into four congruent segments, and semicircles with radius r are drawn.

a. What is the sum of the four arc lengths?
b. What would the sum of the arc lengths be if
$\overline{A B}$ was divided into 8 congruent segments?
16 congruent segments? n congruent segments? Explain your reasoning.

Maintaining Mathematical Proficiency

Find the area of the polygon with the given vertices. (Skills Review Handbook)
43. $X(2,4), Y(8,-1), Z(2,-1)$
44. $L(-3,1), M(4,1), N(4,-5), P(-3,-5)$

REASONING ABSTRACTLY

To be proficient in math, you need to explain to yourself the meaning of a problem and look for entry points to its solution.

11.2
 Areas of Circles and Sectors

Essential Question
How can you find the area of a sector of a circle?

EXPLORATION 1 Finding the Area of a Sector of a Circle

Work with a partner. A sector of a circle is the region bounded by two radii of the circle and their intercepted arc. Find the area of each shaded circle or sector of a circle.
a. entire circle
b. one-fourth of a circle

c. seven-eighths of a circle

d. two-thirds of a circle

EXPLORATION 2 Finding the Area of a Circular Sector

Work with a partner. A center pivot irrigation system consists of 400 meters of sprinkler equipment that rotates around a central pivot point at a rate of once every 3 days to irrigate a circular region with a diameter of 800 meters. Find the area of the sector that is irrigated by this system in one day.

Communicate Your Answer

3. How can you find the area of a sector of a circle?
4. In Exploration 2, find the area of the sector that is irrigated in 2 hours.

11.2 Lesson

Core Vocabulary

geometric probability, p. 649
sector of a circle, p. 650

Previous

circle
radius
diameter
intercepted arc

What You Will Learn

Use the formula for the area of a circle.

- Find areas of sectors.

Use areas of sectors.

Using the Formula for the Area of a Circle

You can divide a circle into congruent sections and rearrange the sections to form a figure that approximates a parallelogram. Increasing the number of congruent sections increases the figure's resemblance to a parallelogram.

The base of the parallelogram that the figure approaches
 is half of the circumference, so $b=\frac{1}{2} C=\frac{1}{2}(2 \pi r)=\pi r$. The height is the radius, so $h=r$. So, the area of the parallelogram is $A=b h=(\pi r)(r)=\pi r^{2}$.

G. Core Concept

Area of a Circle

The area of a circle is

$$
A=\pi r^{2}
$$

where r is the radius of the circle.

EXAMPLE 1 Using the Formula for the Area of a Circle

Find each indicated measure.
a. area of a circle with a radius of 2.5 centimeters
b. diameter of a circle with an area of 113.1 square centimeters

SOLUTION

a. $A=\pi r^{2} \quad$ Formula for area of a circle

$$
\begin{array}{ll}
=\pi \bullet(2.5)^{2} & \\
=6.25 \pi & \\
\approx 19.63 & \\
\text { Substitute } 2.5 \text { for } r . \\
\approx & \\
\text { Use a calculator. }
\end{array}
$$

The area of the circle is about 19.63 square centimeters.
b. $A=\pi r^{2} \quad$ Formula for area of a circle
$113.1=\pi r^{2} \quad$ Substitute 113.1 for A.
$\begin{aligned} \frac{113.1}{\pi} & =r^{2} & & \text { Divide each side by } \pi . \\ 6 & \approx r & & \text { Find the positive square root of each side. }\end{aligned}$
The radius is about 6 centimeters, so the diameter is about 12 centimeters.

Monitoring Progress

1. Find the area of a circle with a radius of 4.5 meters.
2. Find the radius of a circle with an area of 176.7 square feet.

Probabilities found by calculating a ratio of two lengths, areas, or volumes are called geometric probabilities.

EXAMPLE 2 Using Area to Find Probability

You throw a dart at the board shown. Your dart is equally likely to hit any point inside the square board. Are you more likely to get 10 points or 0 points?

SOLUTION

The probability of getting 10 points is

$$
\begin{aligned}
P(10 \text { points }) & =\frac{\text { Area of smallest circle }}{\text { Area of entire board }} \\
& =\frac{\pi \cdot 3^{2}}{18^{2}} \\
& =\frac{9 \pi}{324} \\
& =\frac{\pi}{36} \\
& \approx 0.0873
\end{aligned}
$$

The probability of getting 0 points is

$$
\begin{aligned}
P(0 \text { points }) & =\frac{\text { Area outside largest circle }}{\text { Area of entire board }} \\
& =\frac{18^{2}-\left(\pi \cdot 9^{2}\right)}{18^{2}} \\
& =\frac{324-81 \pi}{324} \\
& =\frac{4-\pi}{4} \\
& \approx 0.215
\end{aligned}
$$

You are more likely to get 0 points.

Monitoring Progress

Use the diagram in Example 2.

3. Are you more likely to get 10 points or 5 points?
4. Are you more likely to get 2 points or 0 points?
5. Are you more likely to get 5 or more points or 2 or less points?
6. Are you more likely to score points $(10,5$, or 2$)$ or get 0 points?

ANALYZING RELATIONSHIPS

The area of a sector is a fractional part of the area of a circle. The area of a sector formed by a 45° arc is $\frac{45^{\circ}}{360^{\circ}}$ or $\frac{1}{8}$ of the area of the circle.

Finding Areas of Sectors

A sector of a circle is the region bounded by two radii of the circle and their intercepted arc. In the diagram below, sector $A P B$ is bounded by $\overline{A P}, \overline{B P}$, and $\overparen{A B}$.

G Core Concept

Area of a Sector

The ratio of the area of a sector of a circle to the area of the whole circle $\left(\pi r^{2}\right)$ is equal to the ratio of the measure of the intercepted arc to 360°.

$$
\frac{\text { Area of sector } A P B}{\pi r^{2}}=\frac{m \overparen{A B}}{360^{\circ}} \text {, or }
$$

Area of sector $A P B=\frac{m \overparen{A B}}{360^{\circ}} \cdot \pi r^{2}$

EXAMPLE 3 Finding Areas of Sectors

Find the areas of the sectors formed by $\angle U T V$.

SOLUTION

Step 1 Find the measures of the minor and major arcs.

$$
\text { Because } m \angle U T V=70^{\circ}, m \overparen{U V}=70^{\circ} \text { and } m \widehat{U S V}=360^{\circ}-70^{\circ}=290^{\circ} .
$$

Step 2 Find the areas of the small and large sectors.

$$
\begin{aligned}
\text { Area of small sector } & =\frac{m \overparen{U V}}{360^{\circ}} \cdot \pi r^{2} & & \text { Formula for area of a sector } \\
& =\frac{70^{\circ}}{360^{\circ}} \cdot \pi \cdot 8^{2} & & \text { Substitute. } \\
& \approx 39.10 & & \text { Use a calculator. } \\
\text { Area of large sector } & =\frac{m \overparen{U S V}}{360^{\circ}} \cdot \pi r^{2} & & \text { Formula for area of a sector } \\
& =\frac{290^{\circ}}{360^{\circ}} \cdot \pi \cdot 8^{2} & & \text { Substitute. } \\
& \approx 161.97 & & \text { Use a calculator. }
\end{aligned}
$$

The areas of the small and large sectors are about 39.10 square inches and about 161.97 square inches, respectively.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
Find the indicated measure.
7. area of red sector
8. area of blue sector

Using Areas of Sectors

EXAMPLE 4 Using the Area of a Sector

Find the area of $\odot V$.

SOLUTION

$$
\begin{aligned}
\text { Area of sector } T V U & =\frac{m \overparen{T U}}{360^{\circ}} \cdot \text { Area of } \odot V & & \text { Formula for area of a sector } \\
35 & =\frac{40^{\circ}}{360^{\circ}} \cdot \text { Area of } \odot V & & \text { Substitute. } \\
315 & =\text { Area of } \odot V & & \text { Solve for area of } \odot V .
\end{aligned}
$$

The area of $\odot V$ is 315 square meters.

EXAMPLE 5 Finding the Area of a Region

A rectangular wall has an entrance cut into it. You want to paint the wall. To the nearest square foot, what is the area of the region you need to paint?

SOLUTION

COMMON ERROR

Use the radius (8 feet), not the diameter (16 feet), when you calculate the area of the semicircle.

The area you need to paint is the area of the rectangle minus the area of the entrance. The entrance can be divided into a semicircle and a square.

$$
\begin{aligned}
\text { Area of wall } & =\text { Area of rectangle }- \text { (Area of semicircle }+ \text { Area of square) } \\
& =36(26)-\left[\frac{180^{\circ}}{360^{\circ}} \cdot\left(\pi \cdot 8^{2}\right)+16^{2}\right] \\
& =936-(32 \pi+256) \\
& \approx 579.47
\end{aligned}
$$

The area you need to paint is about 579 square feet.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
9. Find the area of $\odot H$.

10. Find the area of the figure.

11. If you know the area and radius of a sector of a circle, can you find the measure of the intercepted arc? Explain.

- Vocabulary and Core Concept Check

1. VOCABULARY $\mathrm{A}(\mathrm{n})$ \qquad of a circle is the region bounded by two radii of the circle and their intercepted arc.
2. WRITING The arc measure of a sector in a given circle is doubled. Will the area of the sector also be doubled? Explain your reasoning.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-10, find the indicated measure.
(See Example 1.)
3. area of $\odot C$

4. area of $\odot C$

5. area of a circle with a radius of 5 inches
6. area of a circle with a diameter of 16 feet
7. radius of a circle with an area of 89 square feet
8. radius of a circle with an area of 380 square inches
9. diameter of a circle with an area of 12.6 square inches
10. diameter of a circle with an area of 676π square centimeters

In Exercises 11-18, you throw a dart at the board shown. Your dart is equally likely to hit any point inside the square board. Find the probability that your dart lands in the indicated region. (See Example 2.)
11. red
13. white
15. yellow or red
17. not blue

12. blue
14. yellow
16. yellow or green
18. not yellow

In Exercises 19-22, find the areas of the sectors formed by $\angle \boldsymbol{D F E}$. (See Example 3.)
19.

20.

21.

22.

23. ERROR ANALYSIS Describe and correct the error in finding the area of the circle.

$$
\begin{aligned}
A & =\pi(12)^{2} \\
& =144 \pi \\
& \approx 452.39 \mathrm{ft}^{2}
\end{aligned}
$$

24. ERROR ANALYSIS Describe and correct the error in finding the area of sector $X Z Y$ when the area of $\odot Z$ is 255 square feet.

Let n be the area of sector XZY.

$$
\begin{aligned}
\frac{n}{360} & =\frac{115}{255} \\
n & \approx 162.35 \mathrm{ft}^{2}
\end{aligned}
$$

In Exercises 25 and 26, the area of the shaded sector is shown. Find the indicated measure. (See Example 4.)
25. area of $\odot M$

26. radius of $\odot M$

In Exercises 27-32, find the area of the shaded region. (See Example 5.)
27.

28.

29.

30.

31.

32.

33. PROBLEM SOLVING The diagram shows the shape of a putting green at a miniature golf course. One part of the green is a sector of a circle. Find the area of the putting green.

34. MAKING AN ARGUMENT Your friend claims that if the radius of a circle is doubled, then its area doubles. Is your friend correct? Explain your reasoning.
35. MODELING WITH MATHEMATICS The diagram shows the area of a lawn covered by a water sprinkler.

a. What is the area of the lawn that is covered by the sprinkler?
b. The water pressure is weakened so that the radius is 12 feet. What is the area of the lawn that will be covered?
36. MODELING WITH MATHEMATICS The diagram shows a projected beam of light from a lighthouse.

a. What is the area of water that can be covered by the light from the lighthouse?
b. What is the area of land that can be covered by the light from the lighthouse?
37. ANALYZING RELATIONSHIPS Look back at the Perimeters of Similar Polygons Theorem and the Areas of Similar Polygons Theorem in Section 8.3. How would you rewrite these theorems to apply to circles? Explain your reasoning.
38. ANALYZING RELATIONSHIPS A square is inscribed in a circle. The same square is also circumscribed about a smaller circle. Draw a diagram that represents this situation. Then find the ratio of the area of the larger circle to the area of the smaller circle.
39. CONSTRUCTION The table shows how students get to school.

Method	Percent of students
bus	65%
walk	25%
other	10%

a. Explain why a circle graph is appropriate for the data.
b. You will represent each method by a sector of a circle graph. Find the central angle to use for each sector. Then construct the graph using a radius of 2 inches.
c. Find the area of each sector in your graph.
40. HOW DO YOU SEE IT? The outermost edges of the pattern shown form a square. If you know the dimensions of the outer square, is it possible to compute the total colored area? Explain.

41. ABSTRACT REASONING A circular pizza with a 12 -inch diameter is enough for you and 2 friends. You want to buy pizzas for yourself and 7 friends. A 10 -inch diameter pizza with one topping costs $\$ 6.99$ and a 14 -inch diameter pizza with one topping costs $\$ 12.99$. How many 10 -inch and 14 -inch pizzas should you buy in each situation? Explain.
a. You want to spend as little money as possible.
b. You want to have three pizzas, each with a different topping, and spend as little money as possible.
c. You want to have as much of the thick outer crust as possible.

Maintaining Mathematical Proficiency

 Reviewing what you learned in previous grades and lessonsFind the area of the figure. (Skills Review Handbook)

47.

48.

49.

11.3
 Areas of Polygons

Essential Question
How can you find the area of a regular polygon?

The center of a regular polygon is the center of its circumscribed circle.

The distance from the center to any side of a regular polygon is called the apothem of a regular polygon.

EXPLORATION 1 Finding the Area of a Regular Polygon

Work with a partner. Use dynamic geometry software to construct each regular polygon with side lengths of 4 , as shown. Find the apothem and use it to find the area of the polygon. Describe the steps that you used.

EXPLORATION 2 Writing a Formula for Area

Work with a partner. Generalize the steps you used in Exploration 1 to develop a

REASONING

 ABSTRACTLYTo be proficient in math, you need to know and flexibly use different properties of operations and objects.
formula for the area of a regular polygon.

Communicate Your Answer

3. How can you find the area of a regular polygon?
4. Regular pentagon $A B C D E$ has side lengths of 6 meters and an apothem of approximately 4.13 meters. Find the area of $A B C D E$.

11.3 Lesson

Core Vocabulary

center of a regular polygon, p. 657
radius of a regular polygon, p. 657
apothem of a regular polygon, p. 657
central angle of a regular polygon, p. 657

Previous

rhombus
kite

What You Will Learn

Find areas of rhombuses and kites.

- Find angle measures in regular polygons.

Find areas of regular polygons.

Finding Areas of Rhombuses and Kites

You can divide a rhombus or kite with diagonals d_{1} and d_{2} into two congruent triangles with base d_{1}, height $\frac{1}{2} d_{2}$, and area $\frac{1}{2} d_{1}\left(\frac{1}{2} d_{2}\right)=\frac{1}{4} d_{1} d_{2}$. So, the area of a rhombus or kite is $2\left(\frac{1}{4} d_{1} d_{2}\right)=\frac{1}{2} d_{1} d_{2}$.

G) Core Concept

Area of a Rhombus or Kite

The area of a rhombus or kite with diagonals d_{1} and d_{2} is $\frac{1}{2} d_{1} d_{2}$.

EXAMPLE 1 Finding the Area of a Rhombus or Kite

Find the area of each rhombus or kite.
a.

b.

SOLUTION

a. $A=\frac{1}{2} d_{1} d_{2}$
$=\frac{1}{2}(6)(8)$
$=24$
b. $A=\frac{1}{2} d_{1} d_{2}$ $=\frac{1}{2}(10)(7)$

$$
=35
$$

So, the area is 24 square meters.

So, the area is 35 square centimeters.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com

1. Find the area of a rhombus with diagonals $d_{1}=4$ feet and $d_{2}=5$ feet.
2. Find the area of a kite with diagonals $d_{1}=12$ inches and $d_{2}=9$ inches.

Finding Angle Measures in Regular Polygons

The diagram shows a regular polygon inscribed in a circle. The center of a regular polygon and the radius of a regular polygon are the center and the radius of its circumscribed circle.

The distance from the center to any side of a regular polygon is called the apothem of a regular polygon. The apothem is the height to the base of an isosceles triangle that has two radii as legs. The word "apothem"

$\angle M P N$ is a central angle. refers to a segment as well as a length. For a given regular polygon, think of an apothem as a segment and the apothem as a length.

A central angle of a regular polygon is an angle formed by two radii drawn to consecutive vertices of the polygon. To find the measure of each central angle, divide 360° by the number of sides.

EXAMPLE 2 Finding Angle Measures in a Regular Polygon

In the diagram, $A B C D E$ is a regular pentagon inscribed in $\odot F$. Find each angle measure.

ANALYZING RELATIONSHIPS

$\overline{F G}$ is an altitude of an isosceles triangle, so it is also a median and angle bisector of the isosceles triangle.
a. $m \angle A F B$
b. $m \angle A F G$
c. $m \angle G A F$

SOLUTION

a. $\angle A F B$ is a central angle, so $m \angle A F B=\frac{360^{\circ}}{5}=72^{\circ}$.
b. $\overline{F G}$ is an apothem, which makes it an altitude of isosceles $\triangle A F B$.

So, $\overline{F G}$ bisects $\angle A F B$ and $m \angle A F G=\frac{1}{2} m \angle A F B=36^{\circ}$.
c. By the Triangle Sum Theorem, the sum of the angle measures of right $\triangle G A F$ is 180°.

$$
\begin{aligned}
m \angle G A F & =180^{\circ}-90^{\circ}-36^{\circ} \\
& =54^{\circ}
\end{aligned}
$$

So, $m \angle G A F=54^{\circ}$.

Monitoring Progress
 Help in English and Spanish at BigldeasMath.com

In the diagram, $W X Y Z$ is a square inscribed in $\odot P$.
3. Identify the center, a radius, an apothem, and a central angle of the polygon.
4. Find $m \angle X P Y, m \angle X P Q$, and $m \angle P X Q$.

Finding Areas of Regular Polygons

You can find the area of any regular n-gon by dividing it into congruent triangles.
$A=$ Area of one triangle \cdot Number of triangles

$$
\begin{array}{ll}
=\left(\frac{1}{2} \cdot s \cdot a\right) \cdot n & \begin{array}{l}
\text { Base of triangle is } s \text { and height of } \\
\text { triangle is a. Number of triangles i } \\
=\frac{1}{2} \cdot a \cdot(n \cdot s)
\end{array} \\
\begin{array}{l}
\text { Commutative and Associative }
\end{array} \\
=\frac{1}{2} a \cdot P & \begin{array}{l}
\text { Properties of Multiplication }
\end{array} \\
\text { There are } n \text { congruent sides of } \\
\text { length } s, \text { so perimeter } P \text { is } n \cdot s .
\end{array}
$$

C) Core Concept

Area of a Regular Polygon

The area of a regular n-gon with side length s is one-half the product of the apothem a and the perimeter P.

$$
A=\frac{1}{2} a P, \text { or } A=\frac{1}{2} a \cdot n s
$$

EXAMPLE 3 Finding the Area of a Regular Polygon

A regular nonagon is inscribed in a circle with a radius of 4 units. Find the area of the nonagon.

SOLUTION

The measure of central $\angle J L K$ is $\frac{360^{\circ}}{9}$, or 40°. Apothem $\overline{L M}$ bisects the central angle, so $m \angle K L M$ is 20°. To find the lengths of the legs, use trigonometric ratios for right $\triangle K L M$.

$$
\begin{aligned}
& \sin 20^{\circ}=\frac{M K}{L K} \\
& \sin 20^{\circ}=\frac{M K}{4} \\
& 4 \cos 20^{\circ}=\frac{L M}{L K} \\
& 40^{\circ}=M K
\end{aligned} \quad \cos 20^{\circ}=\frac{L M}{4}
$$

The regular nonagon has side length $s=2(M K)=2\left(4 \sin 20^{\circ}\right)=8 \sin 20^{\circ}$, and apothem $a=L M=4 \cos 20^{\circ}$.

So, the area is $A=\frac{1}{2} a \cdot n s=\frac{1}{2}\left(4 \cos 20^{\circ}\right) \cdot(9)\left(8 \sin 20^{\circ}\right) \approx 46.3$ square units.

EXAMPLE 4 Finding the Area of a Regular Polygon

You are decorating the top of a table by covering it with small ceramic tiles. The tabletop is a regular octagon with 15 -inch sides and a radius of about 19.6 inches. What is the area you are covering?

SOLUTION

Step 1 Find the perimeter P of the tabletop.
An octagon has 8 sides, so $P=8(15)=120$ inches.
Step 2 Find the apothem a. The apothem is height $R S$ of $\triangle P Q R$.
Because $\triangle P Q R$ is isosceles, altitude $\overline{R S}$ bisects $\overline{Q P}$.
So, $Q S=\frac{1}{2}(Q P)=\frac{1}{2}(15)=7.5$ inches.

To find $R S$, use the Pythagorean Theorem for $\triangle R Q S$.

$$
a=R S=\sqrt{19.6^{2}-7.5^{2}}=\sqrt{327.91} \approx 18.108
$$

Step 3 Find the area A of the tabletop.

$$
\begin{aligned}
A & =\frac{1}{2} a P & & \text { Formula for area of a regular polygon } \\
& =\frac{1}{2}(\sqrt{327.91})_{(120)} & & \text { Substitute. } \\
& \approx 1086.5 & & \text { Simplify. }
\end{aligned}
$$

The area you are covering with tiles is about 1086.5 square inches.

Monitoring Progress

Find the area of the regular polygon.
5.

6.

11.3 Exercises

- Vocabulary and Core Concept Check

1. WRITING Explain how to find the measure of a central angle of a regular polygon.
2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.

Find the radius of $\odot F$.

Find $A F$.

Find the apothem of polygon $A B C D E$.

Find the radius of polygon $A B C D E$.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, find the area of the kite or rhombus.
(See Example 1.)
3.

4.

5.

6.

In Exercises 7-10, use the diagram.
7. Identify the center of polygon JKLMN.
8. Identify a central angle of polygon JKLMN.
9. What is the radius of
 polygon JKLMN?
10. What is the apothem of polygon $J K L M N$?

In Exercises 11-14, find the measure of a central angle of a regular polygon with the given number of sides. Round answers to the nearest tenth of a degree, if necessary.
11. 10 sides
12. 18 sides
13. 24 sides
14. 7 sides

In Exercises 15-18, find the given angle measure for regular octagon ABCDEFGH. (See Example 2.)
15. $m \angle G J H$
16. $m \angle G J K$
17. $m \angle K G J$
18. $m \angle E J H$

In Exercises 19-24, find the area of the regular polygon. (See Examples 3 and 4.)
19.

20.

21.

22.

23. an octagon with a radius of 11 units
24. a pentagon with an apothem of 5 units
25. ERROR ANALYSIS Describe and correct the error in finding the area of the kite.

So, the area of the kite is 9.72 square units.
26. ERROR ANALYSIS Describe and correct the error in finding the area of the regular hexagon.
N

$$
\begin{aligned}
s & =\sqrt{15^{2}-13^{2}} \approx 7.5 \\
A & =\frac{1}{2} a \cdot n s \\
& \approx \frac{1}{2}(13)(6)(7.5) \\
& =292.5
\end{aligned}
$$

So, the area of the hexagon is about 292.5 square units.

In Exercises 27-30, you throw a dart at the region shown. Your dart is equally likely to hit any point inside the region. Find the probability that your dart lands in the shaded region.
27.

28.

29.

30.

31. MODELING WITH MATHEMATICS Basaltic columns are geological formations that result from rapidly cooling lava. Giant's Causeway in Ireland contains many hexagonal basaltic columns. Suppose the top of one of the columns is in the shape of a regular hexagon with a radius of 8 inches. Find the area of the top of the column to the nearest square inch.

32. MODELING WITH MATHEMATICS A watch has a circular surface on a background that is a regular octagon. Find the area of the octagon. Then find the area of the silver border around the circular face.

CRITICAL THINKING In Exercises 33-35, tell whether the statement is true or false. Explain your reasoning.
33. The area of a regular n-gon of a fixed radius r increases as n increases.
34. The apothem of a regular polygon is always less than the radius.
35. The radius of a regular polygon is always less than the side length.
36. REASONING Predict which figure has the greatest area and which has the least area. Explain your reasoning. Check by finding the area of each figure.
(A)

(B)

(C)

37. USING EQUATIONS Find the area of a regular pentagon inscribed in a circle whose equation is given by $(x-4)^{2}+(y+2)^{2}=25$.
38. REASONING What happens to the area of a kite if you double the length of one of the diagonals? if you double the length of both diagonals? Justify your answer.

MATHEMATICAL CONNECTIONS In Exercises 39 and 40, write and solve an equation to find the indicated lengths. Round decimal answers to the nearest tenth.
39. The area of a kite is 324 square inches. One diagonal is twice as long as the other diagonal. Find the length of each diagonal.
40. One diagonal of a rhombus is four times the length of the other diagonal. The area of the rhombus is 98 square feet. Find the length of each diagonal.
41. REASONING The perimeter of a regular nonagon, or 9-gon, is 18 inches. Is this enough information to find the area? If so, find the area and explain your reasoning. If not, explain why not.
42. MAKING AN ARGUMENT Your friend claims that it is possible to find the area of any rhombus if you only know the perimeter of the rhombus. Is your friend correct? Explain your reasoning.
43. PROOF Prove that the area of any quadrilateral with perpendicular diagonals is $A=\frac{1}{2} d_{1} d_{2}$, where d_{1} and d_{2} are the lengths of the diagonals.

44. HOW DO YOU SEE IT? Explain how to find the area of the regular hexagon by dividing the hexagon into equilateral triangles.

45. REWRITING A FORMULA Rewrite the formula for the area of a rhombus for the special case of a square with side length s. Show that this is the same as the formula for the area of a square, $A=s^{2}$.
46. REWRITING A FORMULA Use the formula for the area of a regular polygon to show that the area of an equilateral triangle can be found by using the formula $A=\frac{1}{4} s^{2} \sqrt{3}$, where s is the side length.
47. CRITICAL THINKING The area of a regular pentagon is 72 square centimeters. Find the length of one side.
48. CRITICAL THINKING The area of a dodecagon, or 12 -gon, is 140 square inches. Find the apothem of the polygon.
49. USING STRUCTURE In the figure, an equilateral triangle lies inside a square inside a regular pentagon inside a regular hexagon. Find the approximate area of the entire shaded region to the nearest whole number.

50. THOUGHT PROVOKING The area of a regular n-gon is given by $A=\frac{1}{2} a P$. As n approaches infinity, what does the n-gon approach? What does P approach? What does a approach? What can you conclude from your three answers? Explain your reasoning.

51. COMPARING METHODS Find the area of regular pentagon $A B C D E$ by using the formula $A=\frac{1}{2} a P$, or $A=\frac{1}{2} a \bullet n s$. Then find the area by adding the areas of smaller polygons. Check that both methods yield the same area. Which method do you prefer? Explain your reasoning.

52. USING STRUCTURE Two regular polygons both have n sides. One of the polygons is inscribed in, and the other is circumscribed about, a circle of radius r. Find the area between the two polygons in terms of n and r.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Complete the two-way table. (Section 5.3)
53.

		Response		Total
		Yes	No	
$\begin{aligned} & \dot{\vdots} \\ & \text { © } \\ & \text { © } \end{aligned}$	Male		52	
	Female	48		110
	Total	65		

54.

		Response		
		Yes	No	Total
U.	Junior	65		105
	Senior		12	
	Total	116		

11.1-11.3 What Did You Learn?

Core Vocabulary

circumference, p. 640
arc length, p. 641
radian, $p .643$
geometric probability, p. 649
sector of a circle, p. 650
center of a regular polygon, p. 657
radius of a regular polygon, $p .657$
apothem of a regular polygon, $p .657$
central angle of a regular polygon, p. 657

Core Concepts

Section 11.1

Circumference of a Circle, p. 640
Arc Length, p. 641

Section 11.2

Area of a Circle, p. 648
Converting between Degrees and Radians, p. 643

Section 11.3

Area of a Rhombus or Kite, p. 656
Area of a Regular Polygon, p. 658

Mathematical Practices

1. In Exercise 13 on page 644, why does it matter how many revolutions the wheel makes?
2. Your friend is confused with Exercise 23 on page 652. What question(s) could you ask your friend to help them figure it out?
3. In Exercise 38 on page 661, write a proof to support your answer.

Kinesthetic Learners

Incorporate physical activity.

- Act out a word problem as much as possible. Use props when you can.
- Solve a word problem on a large whiteboard. The physical action of writing is more kinesthetic when the writing is larger and you can move around while doing it.
- Make a review card.

11.1-11.3

Quiz

Find the indicated measure. (Section 11.1)

1. $m \overparen{E F}$

2. arc length of $\overparen{Q S}$

3. circumference of $\odot N$

Convert the angle measure. (Section 11.1)
4. Convert 26° to radians.
5. Convert $\frac{5 \pi}{9}$ radians to degrees.

Use the figure to find the indicated measure. (Section 11.2)
6. area of red sector
7. area of blue sector

In the diagram, RSTUVWXY is a regular octagon inscribed in $\odot \boldsymbol{C}$. (Section 11.3)
8. Identify the center, a radius, an apothem, and a central angle of the polygon.
9. Find $m \angle R C Y, m \angle R C Z$, and $m \angle Z R C$.
10. The radius of the circle is 8 units. Find the area of the octagon.

11. The two white congruent circles just fit into the blue circle. What is the area of the blue region? (Section 11.2)

12. Find the area of each rhombus tile. Then find the area of the pattern. (Section 11.3)

11.4 Volumes of Prisms and Cylfinders

Essential Question How can you find the volume of a prism or cylinder that is not a right prism or right cylinder?

Recall that the volume V of a right prism or a right cylinder is equal to the product of the area of a base B and the height h.

$$
V=B h
$$

right cylinder

EXPLORATION 1 Finding Volume

Work with a partner. Consider a stack of square papers that is in the form of a right prism.
a. What is the volume of the prism?
b. When you twist the stack of papers, as shown at the right, do you change the volume? Explain your reasoning.
c. Write a carefully worded conjecture that describes the conclusion you reached in part (b).
d. Use your conjecture to find the volume of the twisted stack
 of papers.

EXPLORATION 2 Finding Volume

Work with a partner. Use the conjecture you wrote in Exploration 1 to find the volume of the cylinder.
a.

b.

Communicate Your Answer

3. How can you find the volume of a prism or cylinder that is not a right prism or right cylinder?
4. In Exploration 1, would the conjecture you wrote change if the papers in each stack were not squares? Explain your reasoning.

11.4 Lesson

Core Vocabulary

polyhedron, p. 666
face, p. 666
edge, p. 666
vertex, p. 666
volume, p. 667
Cavalieri's Principle, p. 667
similar solids, p. 669

Previous

solid
prism
pyramid
cylinder
cone
sphere
base
composite solid

Pentagonal prism

Triangular pyramid

What You Will Learn

Classify solids.
$>$ Find volumes of prisms and cylinders.

Classifying Solids

A three-dimensional figure, or solid, is bounded by flat or curved surfaces that enclose a single region of space. A polyhedron is a solid that is bounded by polygons, called faces. An edge of a polyhedron is a line segment formed by the intersection of two faces. A vertex of a polyhedron is a point where three or more edges meet. The plural of polyhedron is polyhedra or polyhedrons.

G) Core Concept

Types of Solids

Polyhedra

prism

pyramid

Not Polyhedra

cylinder

cone

sphere

To name a prism or a pyramid, use the shape of the base. The two bases of a prism are congruent polygons in parallel planes. For example, the bases of a pentagonal prism are pentagons. The base of a pyramid is a polygon. For example, the base of a triangular pyramid is a triangle.

EXAMPLE 1 Classifying Solids

Tell whether each solid is a polyhedron. If it is, name the polyhedron.
a.

b.

c.

SOLUTION

a. The solid is formed by polygons, so it is a polyhedron. The two bases are congruent rectangles, so it is a rectangular prism.
b. The solid is formed by polygons, so it is a polyhedron. The base is a hexagon, so it is a hexagonal pyramid.
c. The cone has a curved surface, so it is not a polyhedron.

Tell whether the solid is a polyhedron. If it is, name the polyhedron.
1.

2.

3.

Finding Volumes of Prisms and Cylinders

The volume of a solid is the number of cubic units contained in its interior. Volume is measured in cubic units, such as cubic centimeters (cm^{3}). Cavalieri's Principle, named after Bonaventura Cavalieri (1598-1647), states that if two solids have the same height and the same cross-sectional area at every level, then they have the same volume. The prisms below have equal heights h and equal cross-sectional areas B at every level. By Cavalieri's Principle, the prisms have the same volume.

Core Concept

Volume of a Prism

The volume V of a prism is

$$
V=B h
$$

where B is the area of a base and h is the height.

EXAMPLE 2 Finding Volumes of Prisms

Find the volume of each prism.
a.

b.

SOLUTION

a. The area of a base is $B=\frac{1}{2}(3)(4)=6 \mathrm{~cm}^{2}$ and the height is $h=2 \mathrm{~cm}$.

$$
V=B h=6(2)=12
$$

The volume is 12 cubic centimeters.
b. The area of a base is $B=\frac{1}{2}(3)(6+14)=30 \mathrm{~cm}^{2}$ and the height is $h=5 \mathrm{~cm}$.

$$
V=B h=30(5)=150
$$

The volume is 150 cubic centimeters.

Consider a cylinder with height h and base radius r and a rectangular prism with the same height that has a square base with sides of length $r \sqrt{\pi}$.

The cylinder and the prism have the same cross-sectional area, πr^{2}, at every level and the same height. By Cavalieri's Principle, the prism and the cylinder have the same volume. The volume of the prism is $V=B h=\pi r^{2} h$, so the volume of the cylinder is also $V=B h=\pi r^{2} h$.

G Core Concept

Volume of a Cylinder

The volume V of a cylinder is

$$
V=B h=\pi r^{2} h
$$

where B is the area of a base, h is the height, and r is the radius of a base.

EXAMPLE 3 Finding Volumes of Cylinders

Find the volume of each cylinder.
a.

b.

SOLUTION

a. The dimensions of the cylinder are $r=9 \mathrm{ft}$ and $h=6 \mathrm{ft}$.

$$
V=\pi r^{2} h=\pi(9)^{2}(6)=486 \pi \approx 1526.81
$$

The volume is 486π, or about 1526.81 cubic feet.
b. The dimensions of the cylinder are $r=4 \mathrm{~cm}$ and $h=7 \mathrm{~cm}$.

$$
V=\pi r^{2} h=\pi(4)^{2}(7)=112 \pi \approx 351.86
$$

The volume is 112π, or about 351.86 cubic centimeters.

Monitoring Progress

Find the volume of the solid.
4.

5.

G) Core Concept

Similar Solids

Two solids of the same type with equal ratios of corresponding linear measures, such as heights or radii, are called similar solids. The ratio of the corresponding linear measures of two similar solids is called the scale factor. If two similar solids have a scale factor of k, then the ratio of their volumes is equal to k^{3}.

EXAMPLE 4 Finding the Volume of a Similar Solid

Cylinder A and cylinder B are similar. Find the volume of cylinder B.

SOLUTION

The scale factor is $k=\frac{\text { Radius of cylinder B }}{\text { Radius of cylinder A }}$

$$
=\frac{6}{3}=2 \text {. }
$$

$$
V=45 \pi \mathrm{~cm}^{3}
$$

Use the scale factor to find the volume of cylinder B.

$$
\begin{array}{ll}
\frac{\text { Volume of cylinder B }}{\text { Volume of cylinder A }}=k^{3} & \text { The ratio of the volumes is } k^{3} . \\
\frac{\text { Volume of cylinder B }}{45 \pi}=2^{3} & \text { Substitute. } \\
\text { Volume of cylinder B }=360 \pi & \text { Solve for volume of cylinder B. } \\
\text { The volume of cylinder B is } 360 \pi \text { cubic centimeters. }
\end{array}
$$

Monitoring Progress

\square Help in English and Spanish at BigldeasMath.com
6. Prism C and prism D are similar. Find the volume of prism D.

EXAMPLE 5 Finding the Volume of a Composite Solid

Find the volume of the concrete block.

SOLUTION

To find the area of the base, subtract two times the area of the small rectangle from the large rectangle.

$$
\begin{aligned}
B & =\text { Area of large rectangle }-2 \cdot \text { Area of small rectangle } \\
& =1.31(0.66)-2(0.33)(0.39) \\
& =0.6072
\end{aligned}
$$

Using the formula for the volume of a prism, the volume is

$$
V=B h=0.6072(0.66) \approx 0.40
$$

The volume is about 0.40 cubic foot.

Monitoring Progress

 Help in English and Spanish at BigldeasMath.com
7. Find the volume of the composite solid.

11.4 Exercises

- Vocabulary and Core Concept Check

1. VOCABULARY In what type of units is the volume of a solid measured?
2. WHICH ONE DOESN'T BELONG? Which solid does not belong with the other three? Explain your reasoning.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, match the polyhedron with its name.
In Exercises 11-14, find the volume of the prism. (See Example 2.)

4.

5.

A. triangular prism
B. rectangular pyramid
C. hexagonal pyramid
6.

In Exercises 7-10, tell whether the solid is a polyhedron. If it is, name the polyhedron. (See Example 1.)
7.

8.

9.

10.

15.

16.

17.

18.

11.

12.

13.

14.

In Exercises 15-18, find the volume of the cylinder. (See Example 3.)

In Exercises 19 and 20, make a sketch of the solid and find its volume. Round your answer to the nearest hundredth.
19. A prism has a height of 11.2 centimeters and an equilateral triangle for a base, where each base edge is 8 centimeters.
20. A pentagonal prism has a height of 9 feet and each base edge is 3 feet.
21. ERROR ANALYSIS Describe and correct the error in identifying the solid.

The solid is a rectangular pyramid.
22. ERROR ANALYSIS Describe and correct the error in finding the volume of the cylinder.

$$
\begin{aligned}
V & =2 \pi r h \\
& =2 \pi(4)(3) \\
& =24 \pi
\end{aligned}
$$

So, the volume of the cylinder is 24π cubic feet.

In Exercises 23-28, find the missing dimension of the prism or cylinder.
23. Volume $=560 \mathrm{ft}^{3}$

25. Volume $=80 \mathrm{~cm}^{3}$

27. Volume $=3000 \mathrm{ft}^{3}$

24. Volume $=2700 \mathrm{yd}^{3}$

26. Volume $=72.66$ in. ${ }^{3}$

28. Volume $=1696.5 \mathrm{~m}^{3}$

In Exercises 29 and 30, the solids are similar. Find the volume of solid B. (See Example 4.)
29.

Prism B

30.

Cylinder A

$$
V=4608 \pi \text { in }^{3}
$$

Cylinder B

In Exercises 31-34, find the volume of the composite solid. (See Example 5.)
31.

33.

32.

35. MODELING WITH MATHEMATICS The Great Blue Hole is a cylindrical trench located off the coast of Belize. It is approximately 1000 feet wide and 400 feet deep. About how many gallons of water does the Great Blue Hole contain? $\left(1 \mathrm{ft}^{3} \approx 7.48\right.$ gallons $)$

36. COMPARING METHODS The Volume Addition Postulate states that the volume of a solid is the sum of the volumes of all its nonoverlapping parts. Use this postulate to find the volume of the block of concrete in Example 5 by subtracting the volume of each hole from the volume of the large rectangular prism. Which method do you prefer? Explain your reasoning.
37. WRITING Both of the figures shown are made up of the same number of congruent rectangles. Explain how Cavalieri's Principle can be adapted to compare the areas of these figures.

38. HOW DO YOU SEE IT? Each stack of memo papers contains 500 equally-sized sheets of paper. Compare their volumes. Explain your reasoning.

39. OPEN-ENDED Sketch two rectangular prisms that have volumes of 100 cubic inches but different surface areas. Include dimensions in your sketches.
40. MAKING AN ARGUMENT Your friend says that the polyhedron shown is a triangular prism. Your cousin says that it is a triangular pyramid. Who is correct? Explain

41. MAKING AN ARGUMENT A prism and a cylinder have the same height and different cross-sectional areas. Your friend claims that the two solids have the same volume by Cavalieri's Principle. Is your friend correct? Explain your reasoning.
42. THOUGHT PROVOKING Cavalieri's Principle states that the two solids shown below have the same volume. Do they also have the same surface area? Explain your reasoning.

43. PROBLEM SOLVING A barn is in the shape of a pentagonal prism with the dimensions shown. The volume of the barn is 9072 cubic feet. Find the dimensions of each half of the roof.

44. PROBLEM SOLVING A wooden box is in the shape of a regular pentagonal prism. The sides, top, and bottom of the box are 1 centimeter thick. Approximate the volume of wood used to construct the box. Round your answer to the nearest tenth.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Find the surface area of the regular pyramid. (Skills Review Handbook)
45.

46.

47.

11.5 Volumes of Pyramids

Essential Question

How can you find the volume of a pyramid?

EXPLORATION 1 Finding the Volume of a Pyramid

Work with a partner. The pyramid and the prism have the same height and the same square base.

When the pyramid is filled with sand and poured into the prism, it takes three pyramids to fill the prism.

Use this information to write a formula for the volume V of a pyramid.

EXPLORATION 2 Finding the Volume of a Pyramid

Work with a partner. Use the formula you wrote in Exploration 1 to find the volume of the hexagonal pyramid.

Communicate Your Answer

3. How can you find the volume of a pyramid?
4. In Section 11.6, you will study volumes of cones. How do you think you could use a method similar to the one presented in Exploration 1 to write a formula for the volume of a cone? Explain your reasoning.

11.5 Lesson

Core Vocabulary

Previous

pyramid
composite solid

What You Will Learn

Find volumes of pyramids.

- Use volumes of pyramids.

Finding Volumes of Pyramids

Consider a triangular prism with parallel, congruent bases $\triangle J K L$ and $\triangle M N P$. You can divide this triangular prism into three triangular pyramids.

Triangular prism

Triangular pyramid 1

Triangular pyramid 2

Triangular pyramid 3

You can combine triangular pyramids 1 and 2 to form a pyramid with a base that is a parallelogram, as shown at the left. Name this pyramid Q. Similarly, you can combine triangular pyramids 1 and 3 to form pyramid R with a base that is a parallelogram.
In pyramid Q, diagonal $\overline{K M}$ divides $\square J K N M$ into two congruent triangles, so the bases of triangular pyramids 1 and 2 are congruent. Similarly, you can divide any cross section parallel to $\square J K N M$ into two congruent triangles that are the cross sections of triangular pyramids 1 and 2.

By Cavalieri's Principle, triangular pyramids 1 and 2 have the same volume. Similarly, using pyramid R, you can show that triangular pyramids 1 and 3 have the same volume. By the Transitive Property of Equality, triangular pyramids 2 and 3 have the same volume.
The volume of each pyramid must be one-third the volume of the prism, or $V=\frac{1}{3} B h$. You can generalize this formula to say that the volume of any pyramid with any base is equal to $\frac{1}{3}$ the volume of a prism with the same base and height because you can divide any polygon into triangles and any pyramid into triangular pyramids.

G) Core Concept

Volume of a Pyramid

The volume V of a pyramid is

$$
V=\frac{1}{3} B h
$$

where B is the area of the base
 and h is the height.

EXAMPLE 1 Finding the Volume of a Pyramid

Find the volume of the pyramid.

SOLUTION

$$
\begin{aligned}
V & =\frac{1}{3} B h \\
& =\frac{1}{3}\left(\frac{1}{2} \cdot 4 \cdot 6\right)(9) \\
& =36
\end{aligned}
$$

Formula for volume of a pyramid
Substitute.
Simplify.

The volume is 36 cubic meters.

Find the volume of the pyramid.
1.

2.

Using Volumes of Pyramids

EXAMPLE 2 Using the Volume of a Pyramid

Khafre's Pyramid, Egypt

Originally, Khafre's Pyramid had a height of about 144 meters and a volume of about $2,218,800$ cubic meters. Find the side length of the square base.

SOLUTION

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \text { Formula for volume of a pyramid } \\
2,218,800 & \approx \frac{1}{3} x^{2}(144) & & \text { Substitute. } \\
6,656,400 & \approx 144 x^{2} & & \text { Multiply each side by } 3 . \\
46,225 & \approx x^{2} & & \text { Divide each side by } 144 . \\
215 & \approx x & & \text { Find the positive square root. }
\end{aligned}
$$

Originally, the side length of the square base was about 215 meters.

EXAMPLE 3 Using the Volume of a Pyramid

Find the height of the triangular pyramid.

SOLUTION

The area of the base is $B=\frac{1}{2}(3)(4)=6 \mathrm{ft}^{2}$ and the volume is $V=14 \mathrm{ft}^{3}$.

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \text { Formula for volume of a pyramid } \\
14 & =\frac{1}{3}(6) h & & \text { Substitute. } \\
7 & =h & & \text { Solve for } h .
\end{aligned}
$$

The height is 7 feet.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
3. The volume of a square pyramid is 75 cubic meters and the height is 9 meters. Find the side length of the square base.
4. Find the height of the triangular pyramid at the left.

EXAMPLE 4 Finding the Volume of a Similar Solid

Pyramid A and pyramid B are similar. Find the volume of pyramid B.

SOLUTION

Pyramid B

The scale factor is $k=\frac{\text { Height of pyramid B }}{\text { Height of pyramid A }}=\frac{6}{8}=\frac{3}{4}$.
Use the scale factor to find the volume of pyramid B.

$\frac{\text { Volume of pyramid B }}{\text { Volume of pyramid A }}=k^{3}$	The ratio of the volumes is k^{3}.
$\frac{\text { Volume of pyramid B }}{96}=\left(\frac{3}{4}\right)^{3}$	Substitute.
Volume of pyramid B $=40.5$	Solve for volume of pyramid B.

The volume of pyramid B is 40.5 cubic meters.

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com
5. Pyramid C and pyramid D are similar. Find the volume of pyramid D.

EXAMPLE 5 Finding the Volume of a Composite Solid

Find the volume of the composite solid.

SOLUTION

$$
\left.\begin{array}{rlr}
\begin{array}{c}
\text { Volume of } \\
\text { solid }
\end{array} & =\begin{array}{c}
\text { Volume of } \\
\text { cube }
\end{array}
\end{array}+\begin{array}{c}
\text { Volume of } \\
\text { pyramid }
\end{array}\right] . \text { Write formulas. }
$$

- Vocabulary and Core Concept Check

1. VOCABULARY Explain the difference between a triangular prism and a triangular pyramid.
2. REASONING A square pyramid and a cube have the same base and height. Compare the volume of the square pyramid to the volume of the cube.

Monitoring Progress and Modeling with Mathematics

In Exercises 3 and 4, find the volume of the pyramid.
(See Example 1.)
3.

4.

In Exercises 5-8, find the indicated measure.
(See Example 2.)
5. A pyramid with a square base has a volume of 120 cubic meters and a height of 10 meters. Find the side length of the square base.
6. A pyramid with a square base has a volume of 912 cubic feet and a height of 19 feet. Find the side length of the square base.
7. A pyramid with a rectangular base has a volume of 480 cubic inches and a height of 10 inches. The width of the rectangular base is 9 inches. Find the length of the rectangular base.
8. A pyramid with a rectangular base has a volume of 105 cubic centimeters and a height of 15 centimeters. The length of the rectangular base is 7 centimeters. Find the width of the rectangular base.
9. ERROR ANALYSIS Describe and correct the error in finding the volume of the pyramid.

$$
\begin{aligned}
V & =\frac{1}{3}(6)(5) \\
& =\frac{1}{3}(30) \\
& =10 \mathrm{ft}^{3}
\end{aligned}
$$

10. OPEN-ENDED Give an example of a pyramid and a prism that have the same base and the same volume. Explain your reasoning.

In Exercises 11-14, find the height of the pyramid. (See Example 3.)
11. Volume $=15 \mathrm{ft}^{3}$

13. Volume $=198 \mathrm{yd}^{3}$

12. Volume $=224$ in. ${ }^{3}$

14. Volume $=392 \mathrm{~cm}^{3}$

In Exercises 15 and 16, the pyramids are similar. Find the volume of pyramid B. (See Example 4.)
15.

Pyramid B

16

In Exercises 17-20, find the volume of the composite solid. (See Example 5.)

21. ABSTRACT REASONING A pyramid has a height of 8 feet and a square base with a side length of 6 feet.
a. How does the volume of the pyramid change when the base stays the same and the height is doubled?
b. How does the volume of the pyramid change when the height stays the same and the side length of the base is doubled?
c. Are your answers to parts (a) and (b) true for any square pyramid? Explain your reasoning.
22. HOW DO YOU SEE IT? The cube shown is formed by three pyramids, each with the same square base and the same height. How could you use this to verify the formula for the volume of a pyramid?

Maintaining Mathematical Proficiency

23. CRITICAL THINKING Find the volume of the regular pentagonal pyramid. Round your answer to the nearest hundredth. In the diagram, $m \angle A B C=35^{\circ}$.

24. THOUGHT PROVOKING A frustum of a pyramid is the part of the pyramid that lies between the base and a plane parallel to the base, as shown. Write a formula for the volume of the frustum of a square pyramid in terms of a, b, and h. (Hint: Consider the "missing" top of the pyramid and use similar triangles.)

25. MODELING WITH MATHEMATICS Nautical deck prisms were used as a safe way to illuminate decks on ships. The deck prism shown here is composed of the following three solids: a regular hexagonal prism with an edge length of 3.5 inches and a height of 1.5 inches, a regular hexagonal prism with an edge length of 3.25 inches and a height of 0.25 inch, and a regular hexagonal pyramid with an edge length of 3 inches and a height of 3 inches. Find the volume of the deck prism.

Reviewing what you learned in previous grades and lessons

Find the value of \boldsymbol{x}. Round your answer to the nearest tenth. (Section 9.4 and Section 9.5)
26.

27.

28.

29.

CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to understand and use stated assumptions, definitions, and previously established results in constructing arguments.

Surface Areas and Volumes of Cones

Essential Question
How can you find the surface area and the
volume of a cone?

EXPLORATION 1 Finding the Surface Area of a Cone

Work with a partner. Construct a circle with a radius of 3 inches. Mark the circumference of the circle into six equal parts, and label the length of each part. Then cut out one sector of the circle and make a cone.

a. Explain why the base of the cone is a circle. What are the circumference and radius of the base?
b. What is the area of the original circle? What is the area with one sector missing?
c. Describe the surface area of the cone, including the base. Use your description to find the surface area.

EXPLORATION 2 Finding the Volume of a Cone

Work with a partner. The cone and the cylinder have the same height and the same circular base.

When the cone is filled with sand and poured into the cylinder, it takes three cones to fill the cylinder.

Use this information to write a formula for the volume V of a cone.

Communicate Your Answer

3. How can you find the surface area and the volume of a cone?
4. In Exploration 1, cut another sector from the circle and make a cone. Find the radius of the base and the surface area of the cone. Repeat this three times, recording your results in a table. Describe the pattern.

11.6 Lesson

Core Vocabulary

lateral surface of a cone, p. 680

Previous

cone
net
composite solid

What You Will Learn

Find surface areas of right cones.

- Find volumes of cones.
$>$ Use volumes of cones.

Finding Surface Areas of Right Cones

Recall that a circular cone, or cone, has a circular base and a vertex that is not in the same plane as the base. The altitude, or height, is the perpendicular distance between the vertex and the base. In a right cone, the height meets the base at its center and the slant height is the distance between the vertex and a point on the base edge.

The lateral surface of a cone consists of all segments that connect the vertex with points on the base edge. When you cut along the slant height and lay the right cone flat, you get the net shown at the left. In the net, the circular base has an area of πr^{2} and the lateral surface is a sector of a circle. You can find the area of this sector by using a proportion, as shown below.

$\frac{\text { Area of sector }}{\text { Area of circle }}=\frac{\text { Arc length }}{\text { Circumference of circle }}$	Set up proportion.
$\frac{\text { Area of sector }}{\pi \ell^{2}}=\frac{2 \pi r}{2 \pi \ell}$	Substitute.
Area of sector $=\pi \ell^{2} \cdot \frac{2 \pi r}{2 \pi \ell}$	Multiply each side by $\pi \ell^{2}$.
Area of sector $=\pi r \ell$	Simplify.

The surface area of a right cone is the sum of the base area and the lateral area, $\pi r \ell$.

G) Core Concept

Surface Area of a Right Cone

The surface area S of a right cone is

$$
S=\pi r^{2}+\pi r \ell
$$

where r is the radius of the base and ℓ is the slant height.

EXAMPLE 1 Finding Surface Areas of Right Cones

Find the surface area of the right cone.

SOLUTION

$$
S=\pi r^{2}+\pi r \ell=\pi \cdot 4^{2}+\pi(4)(6)=40 \pi \approx 125.66
$$

The surface area is 40π, or about 125.66 square inches.

Monitoring Progress \quad Help in English and Spanish at BigldeasMath.com

1. Find the surface area of the right cone.

Finding Volumes of Cones

Consider a cone with a regular polygon inscribed in the base. The pyramid with the same vertex as the cone has volume $V=\frac{1}{3} B h$. As you increase the number of sides of the polygon, it approaches the base of the cone and the pyramid approaches the cone. The volume approaches $\frac{1}{3} \pi r^{2} h$ as the base area B approaches πr^{2}.

G) Core Concept

Volume of a Cone

The volume V of a cone is

$$
V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h
$$

where B is the area of the base, h is the height, and r is the radius of the base.

EXAMPLE 2 Finding the Volume of a Cone

Find the volume of the cone.

SOLUTION

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h & & \text { Formula for volume of a cone } \\
& =\frac{1}{3} \pi \cdot(2.2)^{2} \cdot 4.5 & & \text { Substitute. } \\
& =7.26 \pi & & \text { Simplify. } \\
& \approx 22.81 & & \text { Use a calculator. }
\end{aligned}
$$

The volume is 7.26π, or about 22.81 cubic centimeters.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
Find the volume of the cone.
2.

3.

Using Volumes of Cones

EXAMPLE 3 Finding the Volume of a Similar Solid

Cone A and cone B are similar. Find the volume of cone B.

Cone A

SOLUTION
 SOLUTION

The scale factor is $k=\frac{\text { Radius of cone } \mathrm{B}}{\text { Radius of cone } \mathrm{A}}=\frac{9}{3}=3$.
Use the scale factor to find the volume of cone B.

Cone D
$2 \mathrm{~cm} \rightarrow \rightarrow$

$\frac{\text { Volume of cone B }}{\text { Volume of cone A }}=k^{3}$
$\frac{\text { Volume of cone B }}{15 \pi}=3^{3}$
Volume of cone $B=405 \pi$
The volume of cone B is 405π cubic feet.

Monitoring Progress

4. Cone C and cone D are similar. Find the volume of cone D.

EXAMPLE 4 Finding the Volume of a Composite Solid

Find the volume of the composite solid.

SOLUTION

Let h_{1} be the height of the cylinder and let h_{2} be the height of the cone.

$$
\left.\begin{array}{rlrl}
\begin{array}{c}
\text { Volume of } \\
\text { solid }
\end{array} & =\begin{array}{c}
\text { Volume of } \\
\text { cylinder }
\end{array} & +\begin{array}{c}
\text { Volume } \\
\text { of cone }
\end{array} &
\end{array}\right)
$$

The volume is 228π, or about 716.28 cubic meters.

Monitoring Progress

 Help in English and Spanish at BigIdeasMath.com5. Find the volume of the composite solid.

- Vocabulary and Core Concept Check

1. WRITING Describe the differences between pyramids and cones. Describe their similarities.
2. COMPLETE THE SENTENCE The volume of a cone with radius r and height h is $\frac{1}{3}$ the volume of a(n) \qquad with radius r and height h.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, find the surface area of the right cone. (See Example 1.)

5. A right cone has a radius of 9 inches and a height of 12 inches.
6. A right cone has a diameter of 11.2 feet and a height of 9.2 feet.

In Exercises 7-10, find the volume of the cone.
(See Example 2.)
7.

8.

9. A cone has a diameter of 11.5 inches and a height of 15.2 inches.
10. A right cone has a radius of 3 feet and a slant height of 6 feet.

In Exercises 11 and 12, find the missing dimension(s).
11. Surface area $=75.4 \mathrm{~cm}^{2}$

12. Volume $=216 \pi$ in. 3

In Exercises 13 and 14, the cones are similar. Find the volume of cone B. (See Example 3.)
13.

14.

Cone B

In Exercises 15 and 16, find the volume of the composite solid. (See Example 4.)
15.

17. ANALYZING RELATIONSHIPS A cone has height h and a base with radius r. You want to change the cone so its volume is doubled. What is the new height if you change only the height? What is the new radius if you change only the radius? Explain.
18. HOW DO YOU SEE IT A snack stand serves a small order of popcorn in a cone-shaped container and a large order of popcorn in a cylindrical container. Do not perform any calculations.

a. How many small containers of popcorn do you have to buy to equal the amount of popcorn in a large container? Explain.
b. Which container gives you more popcorn for your money? Explain.

In Exercises 19 and 20, find the volume of the right cone.

19.

20.

21. MODELING WITH MATHEMATICS

A cat eats half a cup of food, twice per day. Will the automatic pet feeder hold enough food for 10 days? Explain your reasoning. (1 cup ≈ 14.4 in. ${ }^{3}$)

22. MODELING WITH MATHEMATICS During a chemistry lab, you use a funnel to pour a solvent into a flask. The radius of the funnel is 5 centimeters and its height is 10 centimeters. You pour the solvent into the funnel at a rate of 80 milliliters per second and the solvent flows out of the funnel at a rate of 65 milliliters per second. How long will it be before the funnel overflows? ($1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$)

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Find the indicated measure. (Section 11.2)
27. area of a circle with a radius of 7 feet
29. diameter of a circle with an area of 256π square meters
28. area of a circle with a diameter of 22 centimeters
30. radius of a circle with an area of 529π square inches

Surface Areas and Volumes
 of Spheres

Essential Question How can you find the surface area and the volume of a sphere?

EXPLORATION 1 Finding the Surface Area of a Sphere

Work with a partner. Remove the covering from a baseball or softball.

USING TOOLS STRATEGICALLY

To be proficient in math, you need to identify relevant external mathematical resources, such as content located on a website.

$$
S=
$$

Surface area of a sphere
Use the Internet or some other resource to confirm that the formula you wrote for the surface area of a sphere is correct.

EXPLORATION 2 Finding the Volume of a Sphere

Work with a partner. A cylinder is circumscribed about a sphere, as shown. Write a formula for the volume V of the cylinder in terms of the radius r.

$$
V=
$$

Volume of cylinder

When half of the sphere (a hemisphere) is filled with sand and poured into the cylinder, it takes three hemispheres to fill the cylinder. Use this information to write a formula for the volume V of a sphere in terms of the radius r.
$V=$ \square Volume of a sphere

Communicate Your Answer

3. How can you find the surface area and the volume of a sphere?
4. Use the results of Explorations 1 and 2 to find the surface area and the volume of a sphere with a radius of (a) 3 inches and (b) 2 centimeters.

11.7 Lesson

Core Vocabulary

chord of a sphere, p. 686
great circle, p. 686

Previous

sphere
center of a sphere
radius of a sphere
diameter of a sphere
hemisphere

What You Will Learn

Find surface areas of spheres.

- Find volumes of spheres.

Finding Surface Areas of Spheres

A sphere is the set of all points in space equidistant from a given point. This point is called the center of the sphere. A radius of a sphere is a segment from the center to a point on the sphere. A chord of a sphere is a segment whose endpoints are on the sphere. A diameter of a sphere is a chord that contains the center.

As with circles, the terms radius and diameter also represent distances, and the diameter is twice the radius.

If a plane intersects a sphere, then the intersection is either a single point or a circle. If the plane contains the center of the sphere, then the intersection is a great circle of the sphere. The circumference of a great circle
 is the circumference of the sphere. Every great circle of a sphere separates the sphere into two congruent halves called hemispheres.

G) Core Concept

Surface Area of a Sphere

The surface area S of a sphere is

$$
S=4 \pi r^{2}
$$

where r is the radius of the sphere.

To understand the formula for the surface area of a sphere, think of a baseball. The surface area of a baseball is sewn from two congruent shapes, each of which resembles two joined circles.

So, the entire covering of the baseball consists of four circles, each with radius r. The area A of a circle with radius r is $A=\pi r^{2}$. So, the area of the covering can be approximated by $4 \pi r^{2}$. This is the formula for the surface area of a sphere.

EXAMPLE 1 Finding the Surface Areas of Spheres

Find the surface area of each sphere.
a.

b.

SOLUTION

a. $S=4 \pi r^{2} \quad$ Formula for surface area of a sphere
$=4 \pi(8)^{2} \quad$ Substitute 8 for r.
$=256 \pi \quad$ Simplify .
$\approx 804.25 \quad$ Use a calculator.

The surface area is 256π, or about 804.25 square inches.
b. The circumference of the sphere is 12π, so the radius of the sphere is $\frac{12 \pi}{2 \pi}=6$ feet.

$$
\begin{aligned}
S & =4 \pi r^{2} & & \text { Formula for surface area of a sphere } \\
& =4 \pi(6)^{2} & & \text { Substitute } 6 \text { for } r . \\
& =144 \pi & & \text { Simplify. } \\
& \approx 452.39 & & \text { Use a calculator. }
\end{aligned}
$$

The surface area is 144π, or about 452.39 square feet.

EXAMPLE 2 Finding the Diameter of a Sphere

Find the diameter of the sphere.

SOLUTION

$$
\begin{aligned}
S & =4 \pi r^{2} & & \text { Formula for surface area of a sphere } \\
20.25 \pi & =4 \pi r^{2} & & \text { Substitute } 20.25 \pi \text { for } S . \\
5.0625 & =r^{2} & & \text { Divide each side by } 4 \pi . \\
2.25 & =r & & \text { Find the positive square root. }
\end{aligned}
$$

COMMON ERROR

Be sure to multiply the value of r by 2 to find the diameter.

$$
S=20.25 \pi \mathrm{~cm}^{2}
$$

The diameter is $2 r=2 \cdot 2.25=4.5$ centimeters.

Monitoring Progress

Help in English and Spanish at BigldeasMath.com
Find the surface area of the sphere.
1.

2.

3. Find the radius of the sphere.

Finding Volumes of Spheres

The figure shows a hemisphere and a cylinder with a cone removed. A plane parallel to their bases intersects the solids z units above their bases.

Using the AA Similarity Theorem, you can show that the radius of the cross section of the cone at height z is z. The area of the cross section formed by the plane is $\pi\left(r^{2}-z^{2}\right)$ for both solids. Because the solids have the same height and the same cross-sectional area at every level, they have the same volume by Cavalieri's Principle.

$$
\begin{aligned}
V_{\text {hemisphere }} & =V_{\text {cylinder }}-V_{\text {cone }} \\
& =\pi r^{2}(r)-\frac{1}{3} \pi r^{2}(r) \\
& =\frac{2}{3} \pi r^{3}
\end{aligned}
$$

So, the volume of a sphere of radius r is

$$
2 \cdot V_{\text {hemisphere }}=2 \cdot \frac{2}{3} \pi r^{3}=\frac{4}{3} \pi r^{3} \text {. }
$$

G) Core Concept

Volume of a Sphere

The volume V of a sphere is

$$
V=\frac{4}{3} \pi r^{3}
$$

where r is the radius of the sphere.

EXAMPLE 3 Finding the Volume of a Sphere

Find the volume of the soccer ball.

SOLUTION

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} & & \text { Formula for volume of a sphere } \\
& =\frac{4}{3} \pi(4.5)^{3} & & \text { Substitute 4.5 for } r . \\
& =121.5 \pi & & \text { Simplify. } \\
& \approx 381.70 & & \text { Use a calculator. }
\end{aligned}
$$

The volume of the soccer ball is 121.5π, or about 381.70 cubic inches.

EXAMPLE 4 Finding the Volume of a Sphere

The surface area of a sphere is 324π square centimeters. Find the volume of the sphere.

SOLUTION

Step 1 Use the surface area to find the radius.

$$
\begin{aligned}
S & =4 \pi r^{2} & & \text { Formula for surface area of a sphere } \\
324 \pi & =4 \pi r^{2} & & \text { Substitute } 324 \pi \text { for } S . \\
81 & =r^{2} & & \text { Divide each side by } 4 \pi . \\
9 & =r & & \text { Find the positive square root. }
\end{aligned}
$$

The radius is 9 centimeters.
Step 2 Use the radius to find the volume.

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} & & \text { Formula for volume of a sphere } \\
& =\frac{4}{3} \pi(9)^{3} & & \text { Substitute } 9 \text { for } r . \\
& =972 \pi & & \text { Simplify. } \\
& \approx 3053.63 & & \text { Use a calculator. }
\end{aligned}
$$

The volume is 972π, or about 3053.63 cubic centimeters.

EXAMPLE 5 Finding the Volume of a Composite Solid

Find the volume of the composite solid.

SOLUTION

$$
\begin{array}{rlrl}
\begin{array}{c}
\text { Volume } \\
\text { of solid }
\end{array} & =\begin{array}{c}
\text { Volume of } \\
\text { cylinder }
\end{array} & \begin{array}{c}
\text { Volume of } \\
\text { hemisphere }
\end{array} \\
& =\pi r^{2} h-\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right) & & \text { Write formulas. } \\
& =\pi(2)^{2}(2)-\frac{2}{3} \pi(2)^{3} & & \text { Substitute. } \\
& =8 \pi-\frac{16}{3} \pi & & \text { Multiply. } \\
& =\frac{24}{3} \pi-\frac{16}{3} \pi & & \text { Rewrite fractions using least } \\
& =\frac{8}{3} \pi & & \text { common denominator. } \\
& \approx 8.38 & & \text { Subtract. } \\
\text { Use a calculator. }
\end{array}
$$

The volume is $\frac{8}{3} \pi$, or about 8.38 cubic inches.

Monitoring Progress

4. The radius of a sphere is 5 yards. Find the volume of the sphere.
5. The diameter of a sphere is 36 inches. Find the volume of the sphere.
6. The surface area of a sphere is 576π square centimeters. Find the volume of the sphere.
7. Find the volume of the composite solid at the left.

11.7 Exercises

Vocabulary and Core Concept Check

1. VOCABULARY When a plane intersects a sphere, what must be true for the intersection to be a great circle?
2. WRITING Explain the difference between a sphere and a hemisphere.

Monitoring Progress and Modeling with Mathematics

In Exercises 3-6, find the surface area of the sphere.

(See Example 1.)

4.

5.

6.

In Exercises 7-10, find the indicated measure.
(See Example 2.)
7. Find the radius of a sphere with a surface area of 4π square feet.
8. Find the radius of a sphere with a surface area of 1024π square inches.
9. Find the diameter of a sphere with a surface area of 900π square meters.
10. Find the diameter of a sphere with a surface area of 196π square centimeters.

In Exercises 11 and 12, find the surface area of the hemisphere.
11.

12.

In Exercises 13-18, find the volume of the sphere.
(See Example 3.)
13.

14.

15.

16.

17.

18.

In Exercises 19 and 20, find the volume of the sphere with the given surface area. (See Example 4.)
19. Surface area $=16 \pi \mathrm{ft}^{2}$
20. Surface area $=484 \pi \mathrm{~cm}^{2}$
21. ERROR ANALYSIS Describe and correct the error in finding the volume of the sphere.

22. ERROR ANALYSIS Describe and correct the error in finding the volume of the sphere.

$$
\begin{aligned}
V & =\frac{4}{3} \pi(3)^{3} \\
& =36 \pi \\
& \approx 113.10 \mathrm{in.}
\end{aligned}
$$

In Exercises 23-26, find the volume of the composite solid. (See Example 5.)
23.

24.

25.

In Exercises 27-32, find the surface area and volume of the ball.
27. bowling ball

$d=8.5 \mathrm{in}$.
29. softball
$C=12 \mathrm{in}$.
31. volleyball

28. basketball

$C=29.5 \mathrm{in}$.
30. golf ball

$d=1.7 \mathrm{in}$.
$C=26 \mathrm{in}$.
32. baseball

33. MAKING AN ARGUMENT You friend claims that if the radius of a sphere is doubled, then the surface area of the sphere will also be doubled. Is your friend correct? Explain your reasoning.
34. MODELING WITH MATHEMATICS The circumference of Earth is about 24,900 miles. Find the surface area of the Western Hemisphere of Earth.
35. MODELING WITH MATHEMATICS A silo has the dimensions shown. The top of the silo is a hemispherical shape. Find the volume of the silo.

36. MODELING WITH MATHEMATICS Three tennis balls are stored in a cylindrical container with a height of 8 inches and a radius of 1.43 inches. The circumference of a tennis ball is 8 inches.
a. Find the volume of a tennis ball.
b. Find the amount of space within the cylinder not taken up by the tennis balls.
37. ANALYZING RELATIONSHIPS Use the table shown for a sphere.

Radius	Surface area	Volume
3 in.	36π in. 2	36π in. 3
6 in.		
9 in.		
12 in.		

a. Copy and complete the table. Leave your answers in terms of π.
b. What happens to the surface area of the sphere when the radius is doubled? tripled? quadrupled?
c. What happens to the volume of the sphere when the radius is doubled? tripled? quadrupled?
38. MATHEMATICAL CONNECTIONS A sphere has a diameter of $4(x+3)$ centimeters and a surface area of 784π square centimeters. Find the value of x.
39. MODELING WITH MATHEMATICS The radius of Earth is about 3960 miles. The radius of the moon is about 1080 miles.
a. Find the surface area of Earth and the moon.
b. Compare the surface areas of Earth and the moon.
c. About 70% of the surface of Earth is water. How many square miles of water are on Earth's surface?
40. MODELING WITH MATHEMATICS The Torrid Zone on Earth is the area between the Tropic of Cancer and the Tropic of Capricorn. The distance between these two tropics is about 3250 miles. You can estimate the distance as the height of a cylindrical belt around Earth at the equator.

a. Estimate the surface area of the Torrid Zone. (The radius of Earth is about 3960 miles.)
b. A meteorite is equally likely to hit anywhere on Earth. Estimate the probability that a meteorite will land in the Torrid Zone.
41. ABSTRACT REASONING A sphere is inscribed in a cube with a volume of 64 cubic inches. What is the surface area of the sphere? Explain your reasoning.
42. HOW DO YOU SEE IT? The formula for the volume of a hemisphere and a cone are shown. If each solid has the same radius and $r=h$, which solid will have a greater volume? Explain your reasoning.

$V=\frac{2}{3} \pi r^{3}$
$V=\frac{1}{3} \pi r^{2} h$

43. CRITICAL THINKING Let V be the volume of a sphere, S be the surface area of the sphere, and r be the radius of the sphere. Write an equation for V in terms of r and S. (Hint: Start with the ratio $\frac{V}{S}$.)
44. THOUGHT PROVOKING A spherical lune is the region between two great circles of a sphere. Find the formula for the area of a lune.

45. CRITICAL THINKING The volume of a right cylinder is the same as the volume of a sphere. The radius of the sphere is 1 inch. Give three possibilities for the dimensions of the cylinder.
46. PROBLEM SOLVING A spherical cap is a portion of a sphere cut off by a plane. The formula for the volume of a spherical cap is $V=\frac{\pi h}{6}\left(3 a^{2}+h^{2}\right)$, where a is the radius of the base of the cap and h is the height of the cap. Use the diagram and given information to find the volume of each spherical cap.
a. $r=5 \mathrm{ft}, a=4 \mathrm{ft}$
b. $r=34 \mathrm{~cm}, a=30 \mathrm{~cm}$
c. $r=13 \mathrm{~m}, h=8 \mathrm{~m}$
d. $r=75 \mathrm{in} ., h=54 \mathrm{in}$.

47. CRITICAL THINKING A sphere with a radius of 2 inches is inscribed in a right cone with a height of 6 inches. Find the surface area and the volume of the cone.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons
Events \boldsymbol{A} and \boldsymbol{B} are disjoint. Find $\boldsymbol{P}(\boldsymbol{A}$ or $\boldsymbol{B})$. (Section 5.4)
48. $P(A)=0.4, P(B)=0.2$
49. $P(A)=0.75, P(B)=0.05$
50. $P(A)=\frac{1}{8}, P(B)=\frac{3}{4}$
51. $P(A)=\frac{2}{5}, P(B)=\frac{3}{10}$

11.4-11.7 What Did You Learn?

Core Vocabulary

polyhedron, p. 666
face, $p .666$
edge, p. 666
vertex, p. 666
volume, p. 667
Cavalieri's Principle, p. 667
similar solids, p. 669
lateral surface of a cone, p. 680
chord of a sphere, p. 686
great circle, p. 686

Core Concepts

Section 11.4

Types of Solids, p. 666
Cavalieri's Principle, p. 667
Volume of a Prism, p. 667

Volume of a Cylinder, p. 668
Similar Solids, p. 669

Section 11.5

Volume of a Pyramid, p. 674

Section 11.6

Surface Area of a Right Cone, p. 680
Volume of a Cone, p. 681

Section 11.7

Surface Area of a Sphere, p. 686
Volume of a Sphere, p. 688

Mathematical Practices

1. In Exercise 15 on page 677, explain why the volume changed by a factor of $\frac{1}{64}$.
2. In Exercise 38 on page 691, explain the steps you used to find the value of x.

Performance Task:

Tabletop Tiling

A Penrose tiling has a variety of properties that make it attractive. How do the concepts of area and circumference contribute to the visual appeal of a tabletop tiled in this type of pattern?

To explore the answer to this question and more, check out the Performance Task and Real-Life STEM video at BigldeasMath.com.

Chapter Review

11.1 Circumference and Arc Length (pp. 639-646)

The arc length of $\overparen{Q R}$ is $\mathbf{6 . 5 4}$ feet. Find the radius of $\odot P$.

$$
\begin{aligned}
\frac{\text { Arc length of } \overparen{Q R}}{2 \pi r} & =\frac{m \overparen{Q R}}{360^{\circ}} & & \text { Formula for arc length } \\
\frac{6.54}{2 \pi r} & =\frac{75^{\circ}}{360^{\circ}} & & \text { Substitute. } \\
6.54(360) & =75(2 \pi r) & & \text { Cross Products Property } \\
5.00 & \approx r & & \text { Solve for } r .
\end{aligned}
$$

The radius of $\odot P$ is about 5 feet.

Find the indicated measure.

1. diameter of $\odot P$

2. circumference of $\odot F$

3. arc length of $\overparen{A B}$

4. A mountain bike tire has a diameter of 26 inches. To the nearest foot, how far does the tire travel when it makes 32 revolutions?

11.2 Areas of Circles and Sectors (pp. 647-654)

Find the area of sector $A D B$.

$$
\text { Area of sector } \begin{aligned}
A D B & =\frac{m \overparen{A B}}{360^{\circ}} \cdot \pi r^{2} \\
& =\frac{80^{\circ}}{360^{\circ}} \cdot \pi \cdot 10^{2} \\
& \approx 69.81
\end{aligned}
$$

Formula for area of a sector

Substitute.
Use a calculator.

The area of sector $A D B$ is about 69.81 square meters.

Find the area of the blue shaded region.
5.

6.

11.3 Areas of Polygons (pp. 655-662)

A regular hexagon is inscribed in $\odot \boldsymbol{H}$. Find (a) $m \angle \boldsymbol{E} H G$, and (b) the area of the hexagon.

a. $\angle F H E$ is a central angle, so $m \angle F H E=\frac{360^{\circ}}{6}=60^{\circ}$.

Apothem $\overline{G H}$ bisects $\angle F H E$.
So, $m \angle E H G=30^{\circ}$.
b. Because $\triangle E H G$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, $G E=\frac{1}{2} \cdot H E=8$ and $G H=\sqrt{3} \cdot G E=8 \sqrt{3}$. So, $s=2(G E)=16$ and $a=G H=8 \sqrt{3}$.

$$
\begin{aligned}
A & =\frac{1}{2} a \cdot n s & & \text { Formula for area of a regular polygon } \\
& =\frac{1}{2}(8 \sqrt{3})(6)(16) & & \text { Substitute. } \\
& \approx 665.1 & & \text { Simplify. }
\end{aligned}
$$

The area is about 665.1 square units.

Find the area of the kite or rhombus.
8.

9.

10.

Find the area of the regular polygon.
11.

12.

13.

14. A platter is in the shape of a regular octagon with an apothem of 6 inches. Find the area of the platter.

11.4 Volumes of Prisms and Cylinders (pp. 665-672)

a. Tell whether the solid is a polyhedron. If it is, name the polyhedron.

The solid is formed by polygons, so it is a polyhedron. The two bases are congruent octagons, so it is an octagonal prism.
b. Find the volume of the triangular prism.

The area of a base is $B=\frac{1}{2}(6)(8)=24 \mathrm{in} .{ }^{2}$ and the height is $h=5 \mathrm{in}$.

$$
\begin{aligned}
V & =B h & & \text { Formula for volume of a prism } \\
& =24(5) & & \text { Substitute. } \\
& =120 & & \text { Simplify. }
\end{aligned}
$$

The volume is 120 cubic inches.

Tell whether the solid is a polyhedron. If it is, name the polyhedron.
15.

16.

17.

Find the volume of the solid.
18.

19.

20.

11.5 Volumes of Pyramids (pp. 673-678)

Find the volume of the pyramid.

$$
\begin{aligned}
V & =\frac{1}{3} B h & & \text { Formula for volume of a pyramid } \\
& =\frac{1}{3}\left(\frac{1}{2} \cdot 5 \cdot 8\right)(12) & & \text { Substitute. } \\
& =80 & & \text { Simplify. }
\end{aligned}
$$

The volume is 80 cubic meters.

Find the volume of the pyramid.
21.

22.

23.

24. The volume of a square pyramid is 60 cubic inches and the height is 15 inches. Find the side length of the square base.
25. The volume of a square pyramid is 1024 cubic inches. The base has a side length of 16 inches. Find the height of the pyramid.

11.6 Surface Areas and Volumes of Cones (pp. 679-684)

Find the (a) surface area and (b) volume of the cone.
a. $S=\pi r^{2}+\pi r \ell$
$=\pi \cdot 5^{2}+\pi(5)(13)$
$=90 \pi$
≈ 282.74

Formula for surface area of a cone Substitute.

Simplify.
Use a calculator.

The surface area is 90π, or about 282.74 square centimeters.
b. $V=\frac{1}{3} \pi r^{2} h \quad$ Formula for volume of a cone

$$
\begin{array}{ll}
=\frac{1}{3} \pi \cdot 5^{2} \cdot 12 & \\
=10 \text { Substitute. } \\
=100 \pi & \\
\approx 314.16 & \\
\text { Simplify } \\
\text { Use a calculator. }
\end{array}
$$

The volume is 100π, or about 314.16 cubic centimeters.

Find the surface area and the volume of the cone.
26.

27.

28.

29. A cone with a diameter of 16 centimeters has a volume of 320π cubic centimeters. Find the height of the cone.

11.7 Surface Areas and Volumes of Spheres (pp. 685-692)

Find the (a) surface area and (b) volume of the sphere.
a. $S=4 \pi r^{2}$
$=4 \pi(18)^{2}$
Formula for surface area of a sphere
Substitute 18 for r.
$=1296 \pi \quad$ Simplify .
≈ 4071.50
Use a calculator.

The surface area is 1296π, or about 4071.50 square inches.
b. $V=\frac{4}{3} \pi r^{3}$

Formula for volume of a sphere

$=\frac{4}{3} \pi(18)^{3}$	
$=7776 \pi$	
$\approx 24,429.02$	
Substitute 18 for r.	
	Use a calculator.

The volume is 7776π, or about $24,429.02$ cubic inches.

Find the surface area and the volume of the sphere.
30.

31.

32.

33. The shape of Mercury can be approximated by a sphere with a diameter of 4880 kilometers. Find the surface area and the volume of Mercury.
34. A solid is composed of a cube with a side length of 6 meters and a hemisphere with a diameter of 6 meters. Find the volume of the composite solid.

11 Chapter Test

Tell whether the solid is a polyhedron. If it is, name the polyhedron.
1.

2.

3.

Find the volume of the solid.
4.

5.

6.

7.

Find the indicated measure.
8. circumference of $\odot F$

9. $m \widehat{G H}$

10. area of shaded sector

11. Find the surface area of a right cone with a diameter of 10 feet and a height of 12 feet.
12. You have a funnel with the dimensions shown.
a. Find the approximate volume of the funnel.
b. You use the funnel to put oil in a car. Oil flows out of the funnel at a rate of 45 milliliters per second. How long will it take to empty the funnel when it is full of oil? $\left(1 \mathrm{~mL}=1 \mathrm{~cm}^{3}\right)$
c. How long would it take to empty a funnel with a radius of 10 centimeters and a height of 6 centimeters if oil flows out of the funnel at a rate of 45 milliliters per second?

d. Explain why you can claim that the time calculated in part (c) is greater than the time calculated in part (b) without doing any calculations.
13. A water bottle in the shape of a cylinder has a volume of 500 cubic centimeters. The diameter of a base is 7.5 centimeters. What is the height of the bottle? Justify your answer.
14. Find the area of a dodecagon (12 sides) with a side length of 9 inches.
15. In general, a cardboard fan with a greater area does a better job of moving air and cooling you. The fan shown is a sector of a cardboard circle. Another fan has a radius of 6 centimeters and an intercepted arc of 150°. Which fan does a better job of cooling you?

11
 Cumulative Assessment

1. The directed line segment $R S$ is shown. Point Q is located along $\overline{R S}$ so that the ratio of $R Q$ to $Q S$ is 2 to 3 . What are the coordinates of point Q ?
(A) $Q(1.2,3)$
(B) $Q(4,2)$
(C) $Q(2,3)$
(D) $Q(-6,7)$
2. In the diagram, $\overleftrightarrow{R S}$ is tangent to $\odot P$ at Q and $\overline{P Q}$ is a radius of $\odot P$.
 What must be true about $\overleftrightarrow{R S}$ and $\overline{P Q}$? Select all that apply.

$$
P Q=\frac{1}{2} R S \quad P Q=R S \quad \overline{P Q} \text { is tangent to } \odot P . \quad \overline{P Q} \perp \overleftrightarrow{R S}
$$

3. A crayon can be approximated by a composite solid made from a cylinder and a cone. A crayon box is a rectangular prism. The dimensions of a crayon and a crayon box containing 24 crayons are shown.
a. Find the volume of a crayon.
b. Find the amount of space within the crayon box not taken up by the crayons.

4. The graphs of $f(x)=|x|$ and $g(x)=|x+k|$ are shown. Find the value of k.

5. The top of the Washington Monument in Washington, D.C., is a square pyramid, called a pyramidion. What is the volume of the pyramidion?
(A) $22,019.63 \mathrm{ft}^{3}$
(B) $172,006.91 \mathrm{ft}^{3}$
(C) $66,058.88 \mathrm{ft}^{3}$
(D) $207,530.08 \mathrm{ft}^{3}$

6. Prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0,2)$.
7. Enter the missing reasons in the proof of the Base Angles Theorem.

Given $\overline{A B} \cong \overline{A C}$
Prove $\angle B \cong \angle C$

STATEMENTS

1. Draw $\overline{A D}$, the angle bisector of $\angle C A B$.
2. $\angle C A D \cong \angle B A D$
3. $\overline{A B} \cong \overline{A C}$
4. $\overline{D A} \cong \overline{D A}$
5. $\triangle A D B \cong \triangle A D C$
6. $\angle B \cong \angle C$

REASONS

1. Construction of angle bisector
2. \qquad
3. \qquad
4.
5. \qquad
6. \qquad
7. The diagram shows a square pyramid and a cone. Both solids have the same height, h, and the base of the cone has radius r. According to Cavalieri's Principle, the solids will have the same volume if the square base has sides of length \qquad —.

8. A triangle has vertices $X(-2,2), Y(1,4)$, and $Z(2,-2)$. Your friend claims that a translation of $(x, y) \rightarrow(x+2, y-3)$ and a dilation by a scale factor of 3 will produce a similarity transformation. Do you support your friend's claim? Explain your reasoning.
