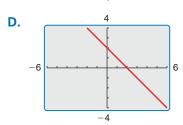
3.3 Function Notation

Essential Question How can you use function notation to represent a function?

The notation f(x), called **function notation**, is another name for y. This notation is read as "the value of f at x" or "f of x." The parentheses do not imply multiplication. You can use letters other than f to name a function. The letters g, h, j, and k are often used to name functions.

EXPLORATION 1

Matching Functions with Their Graphs


Work with a partner. Match each function with its graph.

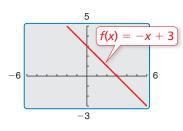
ATTENDING TO PRECISION

To be proficient in math, you need to use clear definitions and state the meanings of the symbols you use.

- **a.** f(x) = 2x 3
- **c.** $h(x) = x^2 1$

- **b.** g(x) = -x + 2
- **d.** $j(x) = 2x^2 3$
- -6
- **B.**-6
- -6 -4

EXPLORATION 2


Evaluating a Function

Work with a partner. Consider the function

$$f(x) = -x + 3.$$

Locate the points (x, f(x)) on the graph. Explain how you found each point.

- **a.** (-1, f(-1))
- **b.** (0, f(0))
- **c.** (1, f(1))
- **d.** (2, f(2))

Communicate Your Answer

3. How can you use function notation to represent a function? How are standard notation and function notation similar? How are they different?

Standard Notation

Function Notation

$$y = 2x + 5$$

$$f(x) = 2x + 5$$

Lesson

Core Vocabulary

function notation, p. 122

Previous

linear function quadrant

READING

The notation f(x) is read as "the value of f at x" or "f of x." It does not mean "f times x."

What You Will Learn

- Use function notation to evaluate and interpret functions.
- Use function notation to solve and graph functions.
- Solve real-life problems using function notation.

Using Function Notation to Evaluate and Interpret

You know that a linear function can be written in the form y = mx + b. By naming a linear function f, you can also write the function using **function notation**.

$$f(x) = mx + b$$

Function notation

The notation f(x) is another name for y. If f is a function, and x is in its domain, then f(x) represents the output of f corresponding to the input x. You can use letters other than f to name a function, such as g or h.

EXAMPLE 1 Evaluating a Function

Evaluate f(x) = -4x + 7 when x = 2 and x = -2.

SOLUTION

$$f(x) = -4x + 7$$
 Write the function. $f(x) = -4x + 7$
 $f(2) = -4(2) + 7$ Substitute for x. $f(-2) = -4(-2) + 7$
 $= -8 + 7$ Multiply. $= 8 + 7$
 $= -1$ Add. $= 15$

When
$$x = 2$$
, $f(x) = -1$, and when $x = -2$, $f(x) = 15$.

EXAMPLE 2 Interpreting Function Notation

Let f(t) be the outside temperature (°F) t hours after 6 A.M. Explain the meaning of each statement.

a.
$$f(0) = 58$$

b.
$$f(6) = n$$

c.
$$f(3) < f(9)$$

SOLUTION

- **a.** The initial value of the function is 58. So, the temperature at 6 A.M. is 58°F.
- **b.** The output of f when t = 6 is n. So, the temperature at noon (6 hours after 6 A.M.) is n° F.
- **c.** The output of f when t = 3 is less than the output of f when t = 9. So, the temperature at 9 A.M. (3 hours after 6 A.M.) is less than the temperature at 3 P.M. (9 hours after 6 A.M.).

Monitoring Progress Help in English and Spanish at BigldeasMath.com

Evaluate the function when x = -4, 0, and 3.

1.
$$f(x) = 2x - 5$$

2.
$$g(x) = -x - 1$$

3. WHAT IF? In Example 2, let f(t) be the outside temperature (°F) t hours after 9 A.M. Explain the meaning of each statement.

a.
$$f(4) = 75$$

b.
$$f(m) = 70$$

a.
$$f(4) = 75$$
 b. $f(m) = 70$ **c.** $f(2) = f(9)$

d.
$$f(6) > f(0)$$

122

Using Function Notation to Solve and Graph

EXAMPLE 3 Solving for the Independent Variable

For $h(x) = \frac{2}{3}x - 5$, find the value of x for which h(x) = -7.

SOLUTION

$$h(x) = \frac{2}{3}x - 5$$
 Write the function.

$$-7 = \frac{2}{3}x - 5$$
 Substitute -7 for $h(x)$.

$$+ 5 + 5 + 5$$
 Add 5 to each side.

$$-2 = \frac{2}{3}x$$
 Simplify.

$$\frac{3}{2} \cdot (-2) = \frac{3}{2} \cdot \frac{2}{3}x$$
 Multiply each side by $\frac{3}{2}$.

$$-3 = x$$
 Simplify.

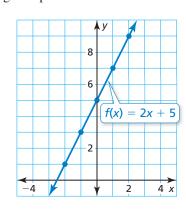
When x = -3, h(x) = -7.

EXAMPLE 4 Graphing a Linear Function in Function Notation

Graph f(x) = 2x + 5.

SOLUTION

Step 1 Make an input-output table to find ordered pairs.


X	-2	-1	0	1	2
f(x)	1	3	5	7	9

Step 2 Plot the ordered pairs.

Step 3 Draw a line through the points.

STUDY TIP

The graph of y = f(x)consists of the points (x, f(x)).

Monitoring Progress Help in English and Spanish at BigldeasMath.com

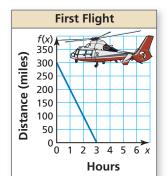
Find the value of x so that the function has the given value.

4.
$$f(x) = 6x + 9$$
; $f(x) = 21$

5.
$$g(x) = -\frac{1}{2}x + 3$$
; $g(x) = -1$

Graph the linear function.

6.
$$f(x) = 3x - 2$$


7.
$$g(x) = -x + 4$$

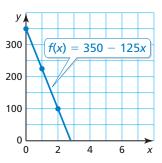
6.
$$f(x) = 3x - 2$$
 7. $g(x) = -x + 4$ **8.** $h(x) = -\frac{3}{4}x - 1$

Solving Real-Life Problems

EXAMPLE 5

Modeling with Mathematics

The graph shows the number of miles a helicopter is from its destination after x hours on its first flight. On its second flight, the helicopter travels 50 miles farther and increases its speed by 25 miles per hour. The function f(x) = 350 - 125xrepresents the second flight, where f(x) is the number of miles the helicopter is from its destination after x hours. Which flight takes less time? Explain.


SOLUTION

- 1. Understand the Problem You are given a graph of the first flight and an equation of the second flight. You are asked to compare the flight times to determine which flight takes less time.
- 2. Make a Plan Graph the function that represents the second flight. Compare the graph to the graph of the first flight. The x-value that corresponds to f(x) = 0represents the flight time.
- **3. Solve the Problem** Graph f(x) = 350 125x.

Step 1 Make an input-output table to find the ordered pairs.

x	0	1	2	3
f(x)	350	225	100	-25

- Step 2 Plot the ordered pairs.
- **Step 3** Draw a line through the points. Note that the function only makes sense when x and f(x) are positive. So, only draw the line in the first quadrant.

- From the graph of the first flight, you can see that when f(x) = 0, x = 3. From the graph of the second flight, you can see that when f(x) = 0, x is slightly less than 3. So, the second flight takes less time.
- 4. Look Back You can check that your answer is correct by finding the value of x for which f(x) = 0.

$$f(x) = 350 - 125x$$
 Write the function.

$$0 = 350 - 125x$$
 Substitute 0 for $f(x)$.

$$-350 = -125x$$
 Subtract 350 from each side.

$$2.8 = x$$
 Divide each side by -125 .

So, the second flight takes 2.8 hours, which is less than 3.

Monitoring Progress Help in English and Spanish at BigldeasMath.com

9. WHAT IF? Let f(x) = 250 - 75x represent the second flight, where f(x) is the number of miles the helicopter is from its destination after x hours. Which flight takes less time? Explain.

Vocabulary and Core Concept Check

- **1.** COMPLETE THE SENTENCE When you write the function y = 2x + 10 as f(x) = 2x + 10, you are using _
- 2. **REASONING** Your height can be represented by a function h, where the input is your age. What does h(14) represent?

Monitoring Progress and Modeling with Mathematics

In Exercises 3–10, evaluate the function when x = -2, 0, and 5. (See Example 1.)

3.
$$f(x) = x + 6$$

4.
$$g(x) = 3x$$

5.
$$h(x) = -2x + 9$$
 6. $r(x) = -x - 7$

6.
$$r(x) = -x - 7$$

7.
$$p(x) = -3 + 4x$$

7.
$$p(x) = -3 + 4x$$
 8. $b(x) = 18 - 0.5x$

9.
$$v(x) = 12 - 2x - 5$$

9.
$$v(x) = 12 - 2x - 5$$
 10. $n(x) = -1 - x + 4$

11. INTERPRETING FUNCTION NOTATION Let c(t) be the number of customers in a restaurant t hours after 8 A.M. Explain the meaning of each statement. (See Example 2.)

a.
$$c(0) = 0$$

b.
$$c(3) = c(8)$$

c.
$$c(n) = 29$$

d.
$$c(13) < c(12)$$

12. INTERPRETING FUNCTION NOTATION Let H(x) be the percent of U.S. households with Internet use x years after 1980. Explain the meaning of each statement.

a.
$$H(23) = 55$$

b.
$$H(4) = k$$

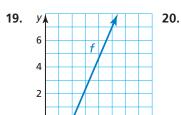
c.
$$H(27) \ge 61$$

d.
$$H(17) + H(21) \approx H(29)$$

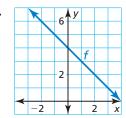
In Exercises 13–18, find the value of x so that the function has the given value. (See Example 3.)

13.
$$h(x) = -7x$$
; $h(x) = 63$

14.
$$t(x) = 3x$$
; $t(x) = 24$


15.
$$m(x) = 4x + 15; m(x) = 7$$

16.
$$k(x) = 6x - 12$$
; $k(x) = 18$


17.
$$q(x) = \frac{1}{2}x - 3$$
; $q(x) = -4$

18.
$$j(x) = -\frac{4}{5}x + 7; j(x) = -5$$

In Exercises 19 and 20, find the value of x so that f(x) = 7.

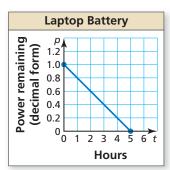
0

- 21. MODELING WITH MATHEMATICS The function C(x) = 17.5x - 10 represents the cost (in dollars) of buying x tickets to the orchestra with a \$10 coupon.
 - a. How much does it cost to buy five tickets?
 - **b.** How many tickets can you buy with \$130?
- 22. MODELING WITH MATHEMATICS The function d(t) = 300,000t represents the distance (in kilometers) that light travels in t seconds.
 - a. How far does light travel in 15 seconds?
 - **b.** How long does it take light to travel 12 million kilometers?

In Exercises 23–28, graph the linear function. (See Example 4.)

23.
$$p(x) = 4x$$

24.
$$h(x) = -5$$

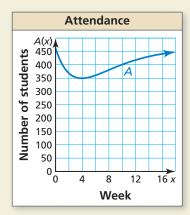

25.
$$d(x) = -\frac{1}{2}x - 3$$
 26. $w(x) = \frac{3}{5}x + 2$

26.
$$w(x) = \frac{3}{5}x + 2$$

27.
$$g(x) = -4 + 7x$$
 28. $f(x) = 3 - 6x$

28.
$$f(x) = 3 - 6x$$

29. PROBLEM SOLVING The graph shows the percent p (in decimal form) of battery power remaining in a laptop computer after *t* hours of use. A tablet computer initially has 75% of its battery power remaining and loses 12.5% per hour. Which computer's battery will last longer? Explain. (See Example 5.)


30. PROBLEM SOLVING The function C(x) = 25x + 50 represents the labor cost (in dollars) for Certified Remodeling to build a deck, where x is the number of hours of labor. The table shows sample labor costs from its main competitor, Master

Cost
\$130
\$160
\$190

Remodeling. The deck is estimated to take 8 hours of labor. Which company would you hire? Explain.

- **31. MAKING AN ARGUMENT** Let P(x) be the number of people in the U.S. who own a cell phone x years after 1990. Your friend says that P(x + 1) > P(x) for any x because x + 1 is always greater than x. Is your friend correct? Explain.
- **32. THOUGHT PROVOKING** Let B(t) be your bank account balance after t days. Describe a situation in which B(0) < B(4) < B(2).
- 33. MATHEMATICAL CONNECTIONS Rewrite each geometry formula using function notation. Evaluate each function when r = 5 feet. Then explain the meaning of the result.
 - **a.** Diameter, d = 2r
 - **b.** Area, $A = \pi r^2$
 - **c.** Circumference, $C = 2\pi r$

34. HOW DO YOU SEE IT? The function y = A(x)represents the attendance at a high school x weeks after a flu outbreak. The graph of the function is shown.

- **a.** What happens to the school's attendance after the flu outbreak?
- **b.** Estimate A(13) and explain its meaning.
- **c.** Use the graph to estimate the solution(s) of the equation A(x) = 400. Explain the meaning of the solution(s).
- **d.** What was the least attendance? When did that occur?
- e. How many students do you think are enrolled at this high school? Explain your reasoning.
- **35.** INTERPRETING FUNCTION NOTATION Let f be a function. Use each statement to find the coordinates of a point on the graph of f.
 - **a.** f(5) is equal to 9.
 - **b.** A solution of the equation f(n) = -3 is 5.
- **36. REASONING** Given a function *f*, tell whether the statement

$$f(a+b) = f(a) + f(b)$$

is true or false for all inputs a and b. If it is false, explain why.

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Solve the inequality. Graph the solution.

37.
$$-2 \le x - 11 \le 6$$

38.
$$5a < -35 \text{ or } a - 14 > 1$$

39.
$$-16 < 6k + 2 < 0$$

40.
$$2d + 7 < -9 \text{ or } 4d - 1 > -3$$

41.
$$5 \le 3y + 8 < 17$$

42.
$$4v + 9 \le 5 \text{ or } -3v \ge -6$$