# 5.6 Proving Triangle Congruence by ASA and AAS

**Essential Question** What information is sufficient to determine whether two triangles are congruent?

#### EXPLORATION 1 Determining Whether SSA Is Sufficient

#### Work with a partner.

- **a.** Use dynamic geometry software to construct  $\triangle ABC$ . Construct the triangle so that vertex *B* is at the origin,  $\overline{AB}$  has a length of 3 units, and  $\overline{BC}$  has a length of 2 units.
- **b.** Construct a circle with a radius of 2 units centered at the origin. Locate point D where the circle intersects  $\overline{AC}$ . Draw  $\overline{BD}$ .



- **c.**  $\triangle ABC$  and  $\triangle ABD$  have two congruent sides and a nonincluded congruent angle. Name them.
- **d.** Is  $\triangle ABC \cong \triangle ABD$ ? Explain your reasoning.
- **e.** Is SSA sufficient to determine whether two triangles are congruent? Explain your reasoning.

#### EXPLORATION 2 Determining Valid Congruence Theorems

**Work with a partner.** Use dynamic geometry software to determine which of the following are valid triangle congruence theorems. For those that are not valid, write a counterexample. Explain your reasoning.

| Possible Congruence Theorem | Valid or not valid? |
|-----------------------------|---------------------|
| SSS                         |                     |
| SSA                         |                     |
| SAS                         |                     |
| AAS                         |                     |
| ASA                         |                     |
| AAA                         |                     |

## **Communicate Your Answer**

- 3. What information is sufficient to determine whether two triangles are congruent?
- **4.** Is it possible to show that two triangles are congruent using more than one congruence theorem? If so, give an example.

#### CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to recognize and use counterexamples.

# 5.6 Lesson

#### Core Vocabulary

**Previous** congruent figures rigid motion

# What You Will Learn

Use the ASA and AAS Congruence Theorems.

### Using the ASA and AAS Congruence Theorems

# **S** Theorem

#### Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If  $\angle A \cong \angle D$ ,  $\overline{AC} \cong \overline{DF}$ , and  $\angle C \cong \angle F$ , then  $\triangle ABC \cong \triangle DEF$ .

*Proof* p. 270



#### PROOF Angle-Side-Angle (ASA) Congruence Theorem

**Given**  $\angle A \cong \angle D, \ \overline{AC} \cong \overline{DF}, \ \angle C \cong \angle F$ 

**Prove**  $\triangle ABC \cong \triangle DEF$ 



First, translate  $\triangle ABC$  so that point A maps to point D, as shown below.



This translation maps  $\triangle ABC$  to  $\triangle DB'C'$ . Next, rotate  $\triangle DB'C'$  counterclockwise through  $\angle C'DF$  so that the image of  $\overrightarrow{DC'}$  coincides with  $\overrightarrow{DF}$ , as shown below.



Because  $\overline{DC'} \cong \overline{DF}$ , the rotation maps point *C'* to point *F*. So, this rotation maps  $\triangle DB'C'$  to  $\triangle DB''F$ . Now, reflect  $\triangle DB''F$  in the line through points *D* and *F*, as shown below.



Because points D and F lie on  $\overrightarrow{DF}$ , this reflection maps them onto themselves. Because a reflection preserves angle measure and  $\angle B''DF \cong \angle EDF$ , the reflection maps  $\overrightarrow{DB''}$  to  $\overrightarrow{DE}$ . Similarly, because  $\angle B''FD \cong \angle EFD$ , the reflection maps  $\overrightarrow{FB''}$  to  $\overrightarrow{FE}$ . The image of B'' lies on  $\overrightarrow{DE}$  and  $\overrightarrow{FE}$ . Because  $\overrightarrow{DE}$  and  $\overrightarrow{FE}$  only have point E in common, the image of B'' must be E. So, this reflection maps  $\triangle DB''F$  to  $\triangle DEF$ .

Because you can map  $\triangle ABC$  to  $\triangle DEF$  using a composition of rigid motions,  $\triangle ABC \cong \triangle DEF$ .

# Theorem

#### Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.







Given  $\angle A \cong \angle D$ ,

 $\angle C \cong \angle F$ ,  $\overline{BC} \cong \overline{EF}$ 



You are given  $\angle A \cong \angle D$  and  $\angle C \cong \angle F$ . By the Third Angles Theorem (Theorem 5.4),  $\angle B \cong \angle E$ . You are given  $\overline{BC} \cong \overline{EF}$ . So, two pairs of angles and their included sides are congruent. By the ASA Congruence Theorem,  $\triangle ABC \cong \triangle DEF$ .

#### **EXAMPLE 1 Identifying Congruent Triangles**

Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.





#### **COMMON ERROR**

You need at least one pair of congruent corresponding sides to prove two triangles are congruent.

#### SOLUTION

a

- a. The vertical angles are congruent, so two pairs of angles and a pair of non-included sides are congruent. The triangles are congruent by the AAS Congruence Theorem.
- b. There is not enough information to prove the triangles are congruent, because no sides are known to be congruent.
- c. Two pairs of angles and their included sides are congruent. The triangles are congruent by the ASA Congruence Theorem.

Monitoring Progress

#### Help in English and Spanish at BigldeasMath.com

1. Can the triangles be proven congruent with the information given in the diagram? If so, state the theorem you would use.





#### CONSTRUCTION Copying a Triangle Using ASA

Construct a triangle that is congruent to  $\triangle ABC$  using the ASA Congruence Theorem. Use a compass and straightedge.

Step 3



#### **SOLUTION**



**Construct a side** Construct DE so that it is congruent to AB.



**Construct an angle** Construct  $\angle D$  with vertex D and side DE so that it is congruent to  $\angle A$ .



**Construct an angle** Construct  $\angle E$  with vertex E and side ED so that it is congruent to  $\angle B$ .



Label a point Label the intersection of the sides of  $\angle D$  and  $\angle E$ that you constructed in Steps 2 and 3 as *F*. By the ASA Congruence Theorem,  $\triangle ABC \cong \triangle DEF.$ 

#### EXAMPLE 2

#### Using the ASA Congruence Theorem

| Write a proof. |                                                                              |  |
|----------------|------------------------------------------------------------------------------|--|
| Given          | $\overline{AD} \parallel \overline{EC}, \ \overline{BD} \cong \overline{BC}$ |  |
| Prove          | $\triangle ABD \cong \triangle EBC$                                          |  |



#### **SOLUTION**

#### **STATEMENTS**

|   | 1. | $\overline{AD}$ | $\ \overline{EC}\ $ |
|---|----|-----------------|---------------------|
| A | 2. | ∠D              | $\cong \angle C$    |

- **S 3.**  $\overline{BD} \cong \overline{BC}$
- **A 4.**  $\angle ABD \cong \angle EBC$ 
  - **5.**  $\triangle ABD \cong \triangle EBC$

# REASONS

| 1. Given                                               |
|--------------------------------------------------------|
| <b>2.</b> Alternate Interior Angles Theorem (Thm. 3.2) |
| <b>3.</b> Given                                        |
| <b>4.</b> Vertical Angles Congruence Theorem (Thm 2.6) |

5. ASA Congruence Theorem

# Monitoring Progress

**2.** In the diagram,  $\overline{AB} \perp \overline{AD}, \overline{DE} \perp \overline{AD}$ , and  $\overline{AC} \cong \overline{DC}$ . Prove  $\triangle ABC \cong \triangle DEC$ .



# Step 2

#### EXAMPLE 3

#### Using the AAS Congruence Theorem

REASONS

Write a proof. **Given**  $\overline{HF} \parallel \overline{GK}, \angle F$  and  $\angle K$  are right angles. **Prove**  $\triangle HFG \cong \triangle GKH$ 

#### SOLUTION

#### **STATEMENTS**

| <b>1.</b> $\overline{HF} \parallel \overline{GK}$   | 1. Given                                                  |
|-----------------------------------------------------|-----------------------------------------------------------|
| <b>A 2.</b> $\angle GHF \cong \angle HGK$           | <b>2.</b> Alternate Interior Angles Theorem (Theorem 3.2) |
| <b>3.</b> $\angle F$ and $\angle K$ are right angle | es. <b>3.</b> Given                                       |
| A 4. $\angle F \cong \angle K$                      | <b>4.</b> Right Angles Congruence Theorem (Theorem 2.3)   |
| <b>S 5.</b> $\overline{HG} \cong \overline{GH}$     | <b>5.</b> Reflexive Property of Congruence (Theorem 2.1)  |
| <b>6.</b> $\triangle HFG \cong \triangle GKH$       | 6. AAS Congruence Theorem                                 |

# Monitoring Progress Help in English and Spanish at BigldeasMath.com

н

G

Κ

**3.** In the diagram,  $\angle S \cong \angle U$  and  $\overline{RS} \cong \overline{VU}$ . Prove  $\triangle RST \cong \triangle VUT$ .



# **Concept Summary**

#### **Triangle Congruence Theorems**

You have learned five methods for proving that triangles are congruent.



In the Exercises, you will prove three additional theorems about the congruence of right triangles: Hypotenuse-Angle, Leg-Leg, and Angle-Leg.

# 5.6 Exercises

## -Vocabulary and Core Concept Check

- **1. WRITING** How are the AAS Congruence Theorem (Theorem 5.11) and the ASA Congruence Theorem (Theorem 5.10) similar? How are they different?
- **2. WRITING** You know that a pair of triangles has two pairs of congruent corresponding angles. What other information do you need to show that the triangles are congruent?

## Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, decide whether enough information is given to prove that the triangles are congruent. If so, state the theorem you would use. (*See Example 1.*)



In Exercises 7 and 8, state the third congruence statement that is needed to prove that  $\triangle FGH \cong \triangle LMN$  using the given theorem.



- 7. Given  $\overline{GH} \cong \overline{MN}$ ,  $\angle G \cong \angle M$ , \_\_\_  $\cong$  \_\_\_\_ Use the AAS Congruence Theorem (Thm. 5.11).
- **8.** Given  $\overline{FG} \cong \overline{LM}$ ,  $\angle G \cong \angle M$ ,  $\underline{\qquad} \cong \underline{\qquad}$

Use the ASA Congruence Theorem (Thm. 5.10).

In Exercises 9–12, decide whether you can use the given information to prove that  $\triangle ABC \cong \triangle DEF$ . Explain your reasoning.

- **9.**  $\angle A \cong \angle D, \angle C \cong \angle F, \overline{AC} \cong \overline{DF}$
- **10.**  $\angle C \cong \angle F, \overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF}$
- **11.**  $\angle B \cong \angle E, \angle C \cong \angle F, \overline{AC} \cong \overline{DE}$
- **12.**  $\angle A \cong \angle D, \angle B \cong \angle E, \overline{BC} \cong \overline{EF}$

**CONSTRUCTION** In Exercises 13 and 14, construct a triangle that is congruent to the given triangle using the ASA Congruence Theorem (Theorem 5.10). Use a compass and straightedge.



**ERROR ANALYSIS** In Exercises 15 and 16, describe and correct the error.



**PROOF** In Exercises 17 and 18, prove that the triangles are congruent using the ASA Congruence Theorem (Theorem 5.10). (*See Example 2.*)

**17.** Given M is the midpoint of  $\overline{NL}$ .  $\overline{NL} \perp \overline{NQ}, \overline{NL} \perp \overline{MP}, \overline{QM} \parallel \overline{PL}$ 

**Prove** 
$$\triangle NQM \cong \triangle MPL$$



**18.** Given  $\overline{AJ} \cong \overline{KC}$ ,  $\angle BJK \cong \angle BKJ$ ,  $\angle A \cong \angle C$ **Prove**  $\triangle ABK \cong \triangle CBJ$ 



**PROOF** In Exercises 19 and 20, prove that the triangles are congruent using the AAS Congruence Theorem (Theorem 5.11). (*See Example 3.*)

**19.** Given  $\overline{VW} \cong \overline{UW}, \angle X \cong \angle Z$ 

**Prove**  $\triangle XWV \cong \triangle ZWU$ 



**20.** Given  $\angle NKM \cong \angle LMK, \angle L \cong \angle N$ **Prove**  $\triangle NMK \cong \triangle LKM$ 



**PROOF** In Exercises 21–23, write a paragraph proof for the theorem about right triangles.

- **21. Hypotenuse-Angle (HA) Congruence Theorem** If an angle and the hypotenuse of a right triangle are congruent to an angle and the hypotenuse of a second right triangle, then the triangles are congruent.
- **22.** Leg-Leg (LL) Congruence Theorem If the legs of a right triangle are congruent to the legs of a second right triangle, then the triangles are congruent.

- **23.** Angle-Leg (AL) Congruence Theorem If an angle and a leg of a right triangle are congruent to an angle and a leg of a second right triangle, then the triangles are congruent.
- **24. REASONING** What additional information do you need to prove  $\triangle JKL \cong \triangle MNL$  by the ASA Congruence Theorem (Theorem 5.10)?



**25.** MATHEMATICAL CONNECTIONS This toy contains  $\triangle ABC$  and  $\triangle DBC$ . Can you conclude that  $\triangle ABC \cong \triangle DBC$  from the given angle measures? Explain.



 $m \angle ABC = (8x - 32)^{\circ}$  $m \angle DBC = (4y - 24)^{\circ}$  $m \angle BCA = (5x + 10)^{\circ}$  $m \angle BCD = (3y + 2)^{\circ}$  $m \angle CAB = (2x - 8)^{\circ}$  $m \angle CDB = (y - 6)^{\circ}$ 

**26. REASONING** Which of the following congruence statements are true? Select all that apply.



- **27. PROVING A THEOREM** Prove the Converse of the Base Angles Theorem (Theorem 5.7). (*Hint:* Draw an auxiliary line inside the triangle.)
- **28.** MAKING AN ARGUMENT Your friend claims to be able to rewrite any proof that uses the AAS Congruence Theorem (Thm. 5.11) as a proof that uses the ASA Congruence Theorem (Thm. 5.10). Is this possible? Explain your reasoning.

- **29. MODELING WITH MATHEMATICS** When a light ray from an object meets a mirror, it is reflected back to your eye. For example, in the diagram, a light ray from point *C* is reflected at point *D* and travels back to point *A*. The *law of reflection* states that the angle of incidence,  $\angle CDB$ , is congruent to the angle of reflection,  $\angle ADB$ .
  - **a.** Prove that  $\triangle ABD$  is congruent to  $\triangle CBD$ .
    - Given  $\angle CDB \cong \angle ADB$ ,  $\overrightarrow{DB} \perp \overrightarrow{AC}$

**Prove**  $\triangle ABD \cong \triangle CBD$ 

- **b.** Verify that  $\triangle ACD$  is isosceles.
- c. Does moving away from the mirror have any effect on the amount of his or her reflection a person sees? Explain.



**30. HOW DO YOU SEE IT?** Name as many pairs of congruent triangles as you can from the diagram. Explain how you know that each pair of triangles is congruent.



- **31. CONSTRUCTION** Construct a triangle. Show that there is no AAA congruence rule by constructing a second triangle that has the same angle measures but is not congruent.
- **32. THOUGHT PROVOKING** Graph theory is a branch of mathematics that studies vertices and the way they are connected. In graph theory, two polygons are *isomorphic* if there is a one-to-one mapping from one polygon's vertices to the other polygon's vertices that preserves adjacent vertices. In graph theory, are any two triangles isomorphic? Explain your reasoning.
- **33. MATHEMATICAL CONNECTIONS** Six statements are given about  $\triangle TUV$  and  $\triangle XYZ$ .



- **a.** List all combinations of three given statements that would provide enough information to prove that  $\triangle TUV$  is congruent to  $\triangle XYZ$ .
- **b.** You choose three statements at random. What is the probability that the statements you choose provide enough information to prove that the triangles are congruent?

