6.5 Properties of Logarithms

Essential Question How can you use properties of exponents to derive properties of logarithms?

Let

\[x = \log_b m \quad \text{and} \quad y = \log_b n. \]

The corresponding exponential forms of these two equations are

\[b^x = m \quad \text{and} \quad b^y = n. \]

EXPLORATION 1 Product Property of Logarithms

Work with a partner. To derive the Product Property, multiply \(m \) and \(n \) to obtain

\[mn = b^{x+y}. \]

The corresponding logarithmic form of \(mn = b^{x+y} \) is \(\log_b mn = x + y \). So,

\[\log_b mn = x + y. \]

Product Property of Logarithms

EXPLORATION 2 Quotient Property of Logarithms

Work with a partner. To derive the Quotient Property, divide \(m \) by \(n \) to obtain

\[\frac{m}{n} = b^{x-y}. \]

The corresponding logarithmic form of \(\frac{m}{n} = b^{x-y} \) is \(\log_b \frac{m}{n} = x - y \). So,

\[\log_b \frac{m}{n} = x - y. \]

Quotient Property of Logarithms

EXPLORATION 3 Power Property of Logarithms

Work with a partner. To derive the Power Property, substitute \(b^x \) for \(m \) in the expression \(\log_b m^n \), as follows.

\[
\log_b m^n = \log_b (b^x)^n \\
= \log_b b^{nx} \\
= nx.
\]

So, substituting \(\log_b m \) for \(x \), you have

\[\log_b m^n = nx. \]

Power Property of Logarithms

Communicate Your Answer

4. How can you use properties of exponents to derive properties of logarithms?

5. Use the properties of logarithms that you derived in Explorations 1–3 to evaluate each logarithmic expression.

\[\begin{align*}
\text{a.} \quad \log_4 16^3 & \quad \text{b.} \quad \log_3 81^{-3} \\
\text{c.} \quad \ln e^2 + \ln e^5 & \quad \text{d.} \quad 2 \ln e^6 - \ln e^5 \\
\text{e.} \quad \log_3 75 - \log_3 3 & \quad \text{f.} \quad \log_4 2 + \log_4 32
\end{align*} \]
What You Will Learn

- Use the properties of logarithms to evaluate logarithms.
- Use the properties of logarithms to expand or condense logarithmic expressions.
- Use the change-of-base formula to evaluate logarithms.

Properties of Logarithms

You know that the logarithmic function with base \(b \) is the inverse function of the exponential function with base \(b \). Because of this relationship, it makes sense that logarithms have properties similar to properties of exponents.

Core Concept

Properties of Logarithms

Let \(b, m, \) and \(n \) be positive real numbers with \(b \neq 1 \).

<table>
<thead>
<tr>
<th>Property</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Property</td>
<td>(\log_b mn = \log_b m + \log_b n)</td>
</tr>
<tr>
<td>Quotient Property</td>
<td>(\log_b \frac{m}{n} = \log_b m - \log_b n)</td>
</tr>
<tr>
<td>Power Property</td>
<td>(\log_b m^n = n \log_b m)</td>
</tr>
</tbody>
</table>

Example 1 Using Properties of Logarithms

Use \(\log_2 3 \approx 1.585 \) and \(\log_2 7 \approx 2.807 \) to evaluate each logarithm.

a. \(\log_2 \frac{3}{7} \)
 SOLUTIO\n a. \(\log_2 \frac{3}{7} = \log_2 3 - \log_2 7 \)
 \[\approx 1.585 - 2.807 \]
 \[= -1.222 \]
 Quotient Property
 Use the given values of \(\log_2 3 \) and \(\log_2 7 \).
 Subtract.

b. \(\log_2 21 \)
 Write 21 as \(3 \cdot 7 \).
 b. \(\log_2 (3 \cdot 7) = \log_2 3 + \log_2 7 \)
 \[\approx 1.585 + 2.807 \]
 \[= 4.392 \]
 Product Property
 Use the given values of \(\log_2 3 \) and \(\log_2 7 \).
 Add.

c. \(\log_2 49 \)
 Write 49 as \(7^2 \).
 c. \(\log_2 7^2 = 2 \log_2 7 \)
 \[= 2 \log_2 7 \]
 \[\approx 2(2.807) \]
 \[= 5.614 \]
 Power Property
 Use the given value \(\log_2 7 \).
 Multiply.

Monitoring Progress

Use \(\log_6 5 \approx 0.898 \) and \(\log_6 8 \approx 1.161 \) to evaluate the logarithm.

1. \(\log_6 \frac{5}{8} \)
2. \(\log_6 40 \)
3. \(\log_6 64 \)
4. \(\log_6 125 \)
Rewriting Logarithmic Expressions

You can use the properties of logarithms to expand and condense logarithmic expressions.

EXAMPLE 2 Expanding a Logarithmic Expression

Expand \(\ln \frac{5x^7}{y} \).

SOLUTION

\[
\ln \frac{5x^7}{y} = \ln 5x^7 - \ln y \\
= \ln 5 + \ln x^7 - \ln y \\
= \ln 5 + 7 \ln x - \ln y
\]

QUOTIENT PROPERTY

EXAMPLE 3 Condensing a Logarithmic Expression

Condense \(\log 9 + 3 \log 2 - \log 3 \).

SOLUTION

\[
\log 9 + 3 \log 2 - \log 3 = \log 9 + \log 2^3 - \log 3 \\
= \log(9 \cdot 2^3) - \log 3 \\
= \log \frac{9 \cdot 2^3}{3} \\
= \log 24
\]

PRODUCT PROPERTY

STUDY TIP

When you are expanding or condensing an expression involving logarithms, you can assume that any variables are positive.

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Expand the logarithmic expression.

5. \(\log_3 3x^4 \)

6. \(\ln \frac{5}{12x} \)

Condense the logarithmic expression.

7. \(\log x - \log 9 \)

8. \(\ln 4 + 3 \ln 3 - \ln 12 \)

Change-of-Base Formula

Logarithms with any base other than 10 or \(e \) can be written in terms of common or natural logarithms using the change-of-base formula. This allows you to evaluate any logarithm using a calculator.

Core Concept

Change-of-Base Formula

If \(a, b, \) and \(c \) are positive real numbers with \(b \neq 1 \) and \(c \neq 1 \), then

\[
\log_c a = \frac{\log_b a}{\log_b c}
\]

In particular, \(\log_c a = \frac{\log a}{\log c} \) and \(\log_c a = \frac{\ln a}{\ln c} \).
EXAMPLE 4 Changing a Base Using Common Logarithms

Evaluate \(\log_3 8 \) using common logarithms.

SOLUTION

\[
\log_3 8 = \frac{\log 8}{\log 3} \approx \frac{0.9031}{0.4771} = 1.893
\]

Use a calculator. Then divide.

EXAMPLE 5 Changing a Base Using Natural Logarithms

Evaluate \(\log_6 24 \) using natural logarithms.

SOLUTION

\[
\log_6 24 = \frac{\ln 24}{\ln 6} \approx \frac{3.1781}{1.7918} = 1.774
\]

Use a calculator. Then divide.

EXAMPLE 6 Solving a Real-Life Problem

For a sound with intensity \(I \) (in watts per square meter), the loudness \(L(I) \) of the sound (in decibels) is given by the function

\[
L(I) = 10 \log \frac{I}{I_0}
\]

where \(I_0 \) is the intensity of a barely audible sound (about \(10^{-12} \) watts per square meter). An artist in a recording studio turns up the volume of a track so that the intensity of the sound doubles. By how many decibels does the loudness increase?

SOLUTION

Let \(I \) be the original intensity, so that \(2I \) is the doubled intensity.

\[
\text{increase in loudness} = L(2I) - L(I)
\]

\[
= 10 \log \frac{2I}{I_0} - 10 \log \frac{I}{I_0}
\]

\[
= 10 \left(\log \frac{2I}{I_0} - \log \frac{I}{I_0} \right)
\]

\[
= 10 \left(\log 2 + \log \frac{I}{I_0} - \log \frac{I}{I_0} \right)
\]

\[
= 10 \log 2
\]

The loudness increases by \(10 \log 2 \) decibels, or about 3 decibels.

Monitoring Progress

Use the change-of-base formula to evaluate the logarithm.

9. \(\log_5 8 \) 10. \(\log_8 14 \) 11. \(\log_{26} 9 \) 12. \(\log_{12} 30 \)

13. **WHAT IF?** In Example 6, the artist turns up the volume so that the intensity of the sound triples. By how many decibels does the loudness increase?
6.5 Exercises

Vocabulary and Core Concept Check

1. **COMPLETE THE SENTENCE** To condense the expression \(\log_3 2 + \log_3 y \), you need to use the _______ Property of Logarithms.

2. **WRITING** Describe two ways to evaluate \(\log_7 12 \) using a calculator.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–8, use \(\log_7 4 \approx 0.712 \) and \(\log_7 12 \approx 1.277 \) to evaluate the logarithm. (See Example 1.)

3. \(\log_7 3 \)
4. \(\log_7 48 \)
5. \(\log_7 16 \)
6. \(\log_7 64 \)
7. \(\log_7 \frac{1}{4} \)
8. \(\log_7 \frac{1}{3} \)

In Exercises 9–12, match the expression with the logarithm that has the same value. Justify your answer.

9. \(\log_5 6 - \log_5 2 \)
10. \(2 \log_5 6 \)
11. \(6 \log_5 2 \)
12. \(\log_5 6 + \log_5 2 \)

In Exercises 13–20, expand the logarithmic expression. (See Example 2.)

13. \(\log_3 4x \)
14. \(\log_6 3x \)
15. \(\log 10x^3 \)
16. \(\ln 3x^4 \)
17. \(\ln \frac{x}{3y} \)
18. \(\ln \frac{6x^2}{y^4} \)
19. \(\log_7 5\sqrt{x} \)
20. \(\log_5 \sqrt{xy} \)

ERROR ANALYSIS In Exercises 21 and 22, describe and correct the error in expanding the logarithmic expression.

21. \(\log_2 5x = (\log_2 5)(\log_2 x) \)

22. \(\ln \frac{\sqrt{y^2}}{x} = 3 \ln y + \ln x \)

In Exercises 23–30, condense the logarithmic expression. (See Example 3.)

23. \(\log_4 7 - \log_4 10 \)
24. \(\ln 12 - \ln 4 \)
25. \(6 \ln x + 4 \ln y \)
26. \(2 \log x + \log 11 \)
27. \(\log_5 4 + \frac{1}{3} \log_5 x \)
28. \(6 \ln 2 - 4 \ln y \)
29. \(5 \ln 2 + 7 \ln x + 4 \ln y \)
30. \(\log_3 4 + 2 \log_3 \frac{1}{2} + \log_3 x \)

31. **REASONING** Which of the following is not equivalent to \(\log_5 \frac{x^2}{3y} \)? Justify your answer.

 A. \(4 \log_5 y - \log_5 3x \)
 B. \(4 \log_5 y - \log_5 3 + \log_5 x \)
 C. \(4 \log_5 y - \log_5 3 - \log_5 x \)
 D. \(\log_5 y^4 - \log_5 3 - \log_5 x \)

32. **REASONING** Which of the following equations is correct? Justify your answer.

 A. \(\log_7 x + 2 \log_7 y = \log_7 (x + y^2) \)
 B. \(9 \log x - 2 \log y = \log \frac{x^9}{y^2} \)
 C. \(5 \log_4 x + 7 \log_2 y = \log_6 x^5 y^3 \)
 D. \(\log_9 x - 5 \log_9 y = \log_9 \frac{x}{y} \)

Section 6.5 Properties of Logarithms 331
In Exercises 33–40, use the change-of-base formula to evaluate the logarithm. (See Examples 4 and 5.)

33. \(\log_4 7 \)
34. \(\log_3 13 \)
35. \(\log_9 15 \)
36. \(\log_8 22 \)
37. \(\log_6 17 \)
38. \(\log_2 28 \)
39. \(\log_{\frac{3}{16}} 17 \)
40. \(\log_3 \frac{9}{40} \)

41. **MAKING AN ARGUMENT** Your friend claims you can use the change-of-base formula to graph \(y = \log_3 x \) using a graphing calculator. Is your friend correct? Explain your reasoning.

42. **HOW DO YOU SEE IT?** Use the graph to determine the value of \(\frac{\log 8}{\log 2} \).

43. **MODELING WITH MATHEMATICS** In Exercises 43 and 44, use the function \(L(I) \) given in Example 6.

43. The blue whale can produce sound with an intensity that is 1 million times greater than the intensity of the loudest sound a human can make. Find the difference in the decibel levels of the sounds made by a blue whale and a human. (See Example 6.)

44. The intensity of the sound of a certain television advertisement is 10 times greater than the intensity of the television program. By how many decibels does the loudness increase?

45. **REWITING A FORMULA** Under certain conditions, the wind speed \(s \) (in knots) at an altitude of \(h \) meters above a grassy plain can be modeled by the function \(s(h) = 2 \ln 100h. \)

 a. By what amount does the wind speed increase when the altitude doubles?

 b. Show that the given function can be written in terms of common logarithms as \(s(h) = \frac{2}{\log e} (\log h + 2) \).

46. **THOUGHT PROVOKING** Determine whether the formula \(\log_b(M + N) = \log_b M + \log_b N \) is true for all positive, real values of \(M, N, \) and \(b \) (with \(b \neq 1 \)). Justify your answer.

47. **USING STRUCTURE** Use the properties of exponents to prove the change-of-base formula. (Hint: Let \(x = \log_b a, y = \log_b c, \) and \(z = \log_b d. \)

48. **CRITICAL THINKING** Describe three ways to transform the graph of \(f(x) = \log x \) to obtain the graph of \(g(x) = \log 100x - 1 \). Justify your answers.

Maintaining Mathematical Proficiency

Reviewing what you learned in previous grades and lessons

Solve the inequality by graphing. (Section 3.6)

49. \(x^2 - 4 > 0 \)
50. \(2(x - 6)^2 - 5 \geq 37 \)
51. \(x^2 + 13x + 42 < 0 \)
52. \(-x^2 - 4x + 6 \leq -6 \)

Solve the equation by graphing the related system of equations. (Section 3.5)

53. \(4x^2 - 3x - 6 = -x^2 + 5x + 3 \)
54. \(-(x + 3)(x - 2) = x^2 - 6x \)
55. \(2x^2 - 4x - 5 = -(x + 3)^2 + 10 \)
56. \(-(x + 7)^2 + 5 = (x + 10)^2 - 3 \)