6.3 Logarithms and Logarithmic Functions

Essential Question What are some of the characteristics of the graph of a logarithmic function?

Every exponential function of the form $f(x) = b^x$, where *b* is a positive real number other than 1, has an inverse function that you can denote by $g(x) = \log_b x$. This inverse function is called a *logarithmic function with base b*.

EXPLORATION 1 Rewriting Exponential Equations

Work with a partner. Find the value of *x* in each exponential equation. Explain your reasoning. Then use the value of *x* to rewrite the exponential equation in its equivalent logarithmic form, $x = \log_b y$.

a. $2^x = 8$	b. $3^x = 9$	c. $4^x = 2$
d. $5^x = 1$	e. $5^x = \frac{1}{5}$	f. $8^x = 4$

EXPLORATION 2

Graphing Exponential and Logarithmic Functions

Work with a partner. Complete each table for the given exponential function. Use the results to complete the table for the given logarithmic function. Explain your reasoning. Then sketch the graphs of f and g in the same coordinate plane.

a.	x	-2	-1	0	1	2
	$f(x)=2^x$					
	x					
	$g(x) = \log_2 x$	-2	-1	0	1	2
b.	x	-2	-1	0	1	2
	$f(x)=10^x$					
	x					
	$g(x) = \log_{10} x$	-2	-1	0	1	2

CONSTRUCTING VIABLE ARGUMENTS

To be proficient in math, you need to justify your conclusions and communicate them to others.

EXPLORATION 3

Characteristics of Graphs of Logarithmic Functions

Work with a partner. Use the graphs you sketched in Exploration 2 to determine the domain, range, *x*-intercept, and asymptote of the graph of $g(x) = \log_b x$, where *b* is a positive real number other than 1. Explain your reasoning.

Communicate Your Answer

- 4. What are some of the characteristics of the graph of a logarithmic function?
- **5.** How can you use the graph of an exponential function to obtain the graph of a logarithmic function?

6.3 Lesson

Core Vocabulary

logarithm of y with base b, р. 310 common logarithm, p. 311 natural logarithm, p. 311

Previous inverse functions

What You Will Learn

- Define and evaluate logarithms.
- Use inverse properties of logarithmic and exponential functions.
- Graph logarithmic functions.

Logarithms

You know that $2^2 = 4$ and $2^3 = 8$. However, for what value of *x* does $2^x = 6$? Mathematicians define this x-value using a *logarithm* and write $x = \log_2 6$. The definition of a logarithm can be generalized as follows.

Core Concept

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log_{h} y$ and is defined as

> $\log_h y = x$ if and only if $b^x = y$.

The expression $\log_b y$ is read as "log base b of y."

This definition tells you that the equations $\log_b y = x$ and $b^x = y$ are equivalent. The first is in *logarithmic form*, and the second is in *exponential form*.

EXAMPLE 1 Rewriting Logarithmic Equations

Rewrite each equation in exponential form.

a. $\log_2 16 = 4$ **b.** $\log_4 1 = 0$ **c.** $\log_{12} 12 = 1$ **d.** $\log_{1/4} 4 = -1$

SOLUTION

Logarithmic Form	Exponential Form
a. $\log_2 16 = 4$	$2^4 = 16$
b. $\log_4 1 = 0$	$4^0 = 1$
c. $\log_{12} 12 = 1$	$12^1 = 12$
d. $\log_{1/4} 4 = -1$	$\left(\frac{1}{4}\right)^{-1} = 4$

EXAMPLE 2

Rewriting Exponential Equations

Rewrite each equation in logarithmic form.

d. $6^{-3} = \frac{1}{216}$ **a.** $5^2 = 25$ **b.** $10^{-1} = 0.1$ **c.** $8^{2/3} = 4$

SOLUTION

	Exponential Form	Logarithmic Form
a.	$5^2 = 25$	$\log_5 25 = 2$
b.	$10^{-1} = 0.1$	$\log_{10} 0.1 = -1$
c.	$8^{2/3} = 4$	$\log_8 4 = \frac{2}{3}$
d.	$6^{-3} = \frac{1}{216}$	$\log_6 \frac{1}{216} = -3$

Parts (b) and (c) of Example 1 illustrate two special logarithm values that you should learn to recognize. Let *b* be a positive real number such that $b \neq 1$.

Logarithm of 1	Logarithm of <i>b</i> with Base <i>b</i>
$\log_b 1 = 0$ because $b^0 = 1$.	$\log_b b = 1$ because $b^1 = b$.

EXAMPLE 3 Evaluating Logarithmic Expressions

Evaluate each logarithm.

a. log ₄ 64	b. $\log_5 0.2$	c. $\log_{1/5} 125$	d. $\log_{36} 6$
a. 10g ₄ 0 4	D. 10g5 0.2	$c_{10g_{1/5}}$ 125	$u_{10} \log_{36} 0$

SOLUTION

To help you find the value of $\log_b y$, ask yourself what power of *b* gives you *y*.

a. What power of 4 gives you 64?	$4^3 = 64$, so $\log_4 64 = 3$.
b. What power of 5 gives you 0.2?	$5^{-1} = 0.2$, so $\log_5 0.2 = -1$.
c. What power of $\frac{1}{5}$ gives you 125?	$\left(\frac{1}{5}\right)^{-3} = 125$, so $\log_{1/5} 125 = -3$.
d. What power of 36 gives you 6?	$36^{1/2} = 6$, so $\log_{36} 6 = \frac{1}{2}$.

A **common logarithm** is a logarithm with base 10. It is denoted by \log_{10} or simply by log. A **natural logarithm** is a logarithm with base *e*. It can be denoted by \log_e but is usually denoted by ln.

Common Logarithm	Natural Logarithm
$\log_{10} x = \log x$	$\log_e x = \ln x$

EXAMPLE 4 Evaluating Common and Natural Logarithms

Evaluate (a) log 8 and (b) ln 0.3 using a calculator. Round your answer to three decimal places.

SOLUTION

Most calculators have keys for evaluating common and natural logarithms.

a. $\log 8 \approx 0.903$

b. $\ln 0.3 \approx -1.204$

Check your answers by rewriting each logarithm in exponential form and evaluating.

log(8)	
.903089987	
ln(0.3)	
-1.203972804	

Monitoring Progress 🚽 Help in English and Spanish at BigldeasMath.com

Rewrite the equation in exponential form.

1. $\log_3 81 = 4$ **2.** $\log_7 7 = 1$ **3.** $\log_{14} 1 = 0$ **4.** $\log_{1/2} 32 = -5$

Rewrite the equation in logarithmic form.

5. $7^2 = 49$ **6.** $50^0 = 1$ **7.** $4^{-1} = \frac{1}{4}$ **8.** $256^{1/8} = 2$

Evaluate the logarithm. If necessary, use a calculator and round your answer to three decimal places.

9. $\log_2 32$ 10. $\log_{27} 3$	11. log 12	12. ln 0.75
--	-------------------	--------------------

Using Inverse Properties

By the definition of a logarithm, it follows that the logarithmic function $g(x) = \log_b x$ is the inverse of the exponential function $f(x) = b^x$. This means that

 $g(f(x)) = \log_b b^x = x$ and $f(g(x)) = b^{\log_b x} = x$.

In other words, exponential functions and logarithmic functions "undo" each other.

EXAMPLE 5 Using Inverse Properties

Simplify (a) $10^{\log 4}$ and (b) $\log_5 25^x$.

SOLUTION

a. $10^{\log 4} = 4$	$b^{\log_b x} = x$
b. $\log_5 25^x = \log_5(5^2)^x$	Express 25 as a power with base 5.
$= \log_5 5^{2x}$	Power of a Power Property
= 2x	$\log_b b^x = x$

EXAMPLE 6

Finding Inverse Functions

Find the inverse of each function.

a.
$$f(x) = 6^x$$
 b. $y = \ln(x+3)$

SOLUTION

a. From the definition of logarithm, the inverse of $f(x) = 6^x$ is $g(x) = \log_6 x$.

b.	$y = \ln(x+3)$	Write original function.
	$x = \ln(y + 3)$	Switch x and y.
	$e^x = y + 3$	Write in exponential form.
	$e^x - 3 = y$	Subtract 3 from each side.

The inverse of $y = \ln(x + 3)$ is $y = e^x - 3$.

Graphing Logarithmic Functions

You can use the inverse relationship between exponential and logarithmic functions to graph logarithmic functions.

🔄 Core Concept

Parent Graphs for Logarithmic Functions

The graph of $f(x) = \log_b x$ is shown below for b > 1 and for 0 < b < 1. Because $f(x) = \log_b x$ and $g(x) = b^x$ are inverse functions, the graph of $f(x) = \log_b x$ is the reflection of the graph of $g(x) = b^x$ in the line y = x.

Graph of $f(x) = \log_b x$ for b > 1Graph of $f(x) = \log_b x$ for 0 < b < 1 $g(x) = \overline{b^2}$ $q(x) = b^x$ (0, 1) (0, 1)(1, 0) x 0 1. $f(x) = \log_b x$ $f(x) = \log_b x$

Note that the y-axis is a vertical asymptote of the graph of $f(x) = \log_b x$. The domain of $f(x) = \log_b x$ is x > 0, and the range is all real numbers.

EXAMPLE 7 **Graphing a Logarithmic Function**

 $\operatorname{Graph} f(x) = \log_3 x.$

SOLUTION

- **Step 1** Find the inverse of *f*. From the definition of logarithm, the inverse of $f(x) = \log_3 x$ is $g(x) = 3^x$.
- **Step 2** Make a table of values for $g(x) = 3^x$.

x	-2	-1	0	1	2
g(x)	$\frac{1}{9}$	$\frac{1}{3}$	1	3	9

Step 3 Plot the points from the table and connect them with a smooth curve.

Step 4 Because $f(x) = \log_3 x$ and $g(x) = 3^x$ are inverse functions, the graph of fis obtained by reflecting the graph of g in the line y = x. To do this, reverse the coordinates of the points on gand plot these new points on the graph of *f*.

Graph the function.

19. $y = \log_2 x$ **20.** $f(x) = \log_5 x$

21. $y = \log_{1/2} x$

6.3 Exercises

-Vocabulary and Core Concept Check

1.	COMPLETE THE SENTENCE A logarithm	m with base 10 is called a(n)	logarithm.	
2.	2. COMPLETE THE SENTENCE The expression log ₃ 9 is read as			
3.	3. WRITING Describe the relationship between $y = 7^x$ and $y = \log_7 x$.			
4.	4. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.			
	What power of 4 gives you 16?	What is log base 4 of 16?		
	Evaluate 4^2 .	Evaluate $\log_4 16$.		

Monitoring Progress and Modeling with Mathematics

In Exercises 5–10, rewrite the equation in exponential form. (*See Example 1.*)

5.	$\log_3 9 = 2$	6.	$\log_4 4 = 1$
7.	$\log_{6} 1 = 0$	8.	$\log_7 343 = 3$
9.	$\log_{1/2} 16 = -4$	10.	$\log_3 \frac{1}{3} = -1$

In Exercises 11–16, rewrite the equation in logarithmic form. (*See Example 2.*)

11.	$6^2 = 36$	12.	$12^0 = 1$
13.	$16^{-1} = \frac{1}{16}$	14.	$5^{-2} = \frac{1}{25}$
15.	$125^{2/3} = 25$	16.	$49^{1/2} = 7$

In Exercises 17–24, evaluate the logarithm. (*See Example 3.*)

17.	log ₃ 81	18.	log ₇ 49
19.	log ₃ 3	20.	log _{1/2} 1
21.	$\log_5 \frac{1}{625}$	22.	$\log_8 \frac{1}{512}$
23.	log ₄ 0.25	24.	log ₁₀ 0.001

25. NUMBER SENSE Order the logarithms from least value to greatest value.

26. WRITING Explain why the expressions $\log_2(-1)$ and $\log_1 1$ are not defined.

In Exercises 27–32, evaluate the logarithm using a calculator. Round your answer to three decimal places. (*See Example 4.*)

27.	log 6	28.	ln 12
29.	$\ln \frac{1}{3}$	30.	$\log \frac{2}{7}$
31.	3 ln 0.5	32.	$\log 0.6 + 1$

33. MODELING WITH MATHEMATICS Skydivers use an instrument called an *altimeter* to track their altitude as they fall. The altimeter determines altitude by measuring air pressure. The altitude *h* (in meters) above sea level is related to the air pressure *P* (in pascals) by the function shown in the diagram. What is the altitude above sea level when the air pressure is 57,000 pascals?

- **34. MODELING WITH MATHEMATICS** The pH value for a substance measures how acidic or alkaline the substance is. It is given by the formula $pH = -log[H^+]$, where H⁺ is the hydrogen ion concentration (in moles per liter). Find the pH of each substance.
 - **a.** baking soda: $[H^+] = 10^{-8}$ moles per liter
 - **b.** vinegar: $[H^+] = 10^{-3}$ moles per liter

 $\log_2 10$

In Exercises 35–40, simplify the expression.

(See Example 5.)

35.	$7^{\log_7 x}$	36.	$3^{\log_3 5x}$

- **37.** $e^{\ln 4}$ **38.** $10^{\log 15}$
- **39.** $\log_3 3^{2x}$ **40.** $\ln e^{x+1}$
- **41. ERROR ANALYSIS** Describe and correct the error in rewriting $4^{-3} = \frac{1}{64}$ in logarithmic form.

42. ERROR ANALYSIS Describe and correct the error in simplifying the expression $\log_4 64^x$.

In Exercises 43–52, find the inverse of the function. (*See Example 6.*)

43.	$y = 0.3^{x}$	44.	$y = 11^{x}$
45.	$y = \log_2 x$	46.	$y = \log_{1/5} x$
47.	$y = \ln(x - 1)$	48.	$y = \ln 2x$
49.	$y = e^{3x}$	50.	$y = e^{x-4}$
51.	$y = 5^x - 9$	52.	$y = 13 + \log x$

- **53. PROBLEM SOLVING** The wind speed *s* (in miles per hour) near the center of a tornado can be modeled by $s = 93 \log d + 65$, where *d* is the distance (in miles) that the tornado travels.
 - a. In 1925, a tornado traveled 220 miles through three states. Estimate the wind speed near the center of the tornado.
 - **b.** Find the inverse of the given function. Describe what the inverse represents.

54. MODELING WITH MATHEMATICS The energy

magnitude *M* of an earthquake can be modeled by $M = \frac{2}{3} \log E - 9.9$, where *E* is the amount of energy released (in ergs).

- **a.** In 2011, a powerful earthquake in Japan, caused by the slippage of two tectonic plates along a fault, released 2.24×10^{28} ergs. What was the energy magnitude of the earthquake?
- **b.** Find the inverse of the given function. Describe what the inverse represents.

In Exercises 55–60, graph the function. (See Example 7.)

55. $y = \log_4 x$	56. $y = \log_6 x$
57. $y = \log_{1/3} x$	58. $y = \log_{1/4} x$
59. $y = \log_2 x - 1$	60. $y = \log_3(x + 2)$

USING TOOLS In Exercises 61–64, use a graphing calculator to graph the function. Determine the domain, range, and asymptote of the function.

- **61.** $y = \log(x + 2)$ **62.** $y = -\ln x$
- **63.** $y = \ln(-x)$ **64.** $y = 3 \log x$
- **65. MAKING AN ARGUMENT** Your friend states that every logarithmic function will pass through the point (1, 0). Is your friend correct? Explain your reasoning.
- **66. ANALYZING RELATIONSHIPS** Rank the functions in order from the least average rate of change to the greatest average rate of change over the interval $1 \le x \le 10$.

67. PROBLEM SOLVING Biologists have found that the length ℓ (in inches) of an alligator and its weight *w* (in pounds) are related by the function $\ell = 27.1 \ln w - 32.8$.

- a. Use a graphing calculator to graph the function.
- **b.** Use your graph to estimate the weight of an alligator that is 10 feet long.
- **c.** Use the *zero* feature to find the *x*-intercept of the graph of the function. Does this *x*-value make sense in the context of the situation? Explain.
- **68. HOW DO YOU SEE IT?** The figure shows the graphs of the two functions *f* and *g*.

- **a.** Compare the end behavior of the logarithmic function *g* to that of the exponential function *f*.
- **b.** Determine whether the functions are inverse functions. Explain.
- c. What is the base of each function? Explain.

69. PROBLEM SOLVING A study in Florida found that the number *s* of fish species in a pool or lake can be modeled by the function

 $s = 30.6 - 20.5 \log A + 3.8 (\log A)^2$

where *A* is the area (in square meters) of the pool or lake.

- **a.** Use a graphing calculator to graph the function on the domain $200 \le A \le 35,000$.
- **b.** Use your graph to estimate the number of species in a lake with an area of 30,000 square meters.
- **c.** Use your graph to estimate the area of a lake that contains six species of fish.
- **d.** Describe what happens to the number of fish species as the area of a pool or lake increases. Explain why your answer makes sense.
- **70. THOUGHT PROVOKING** Write a logarithmic function that has an output of -4. Then sketch the graph of your function.
- **71. CRITICAL THINKING** Evaluate each logarithm. (*Hint*: For each logarithm $\log_b x$, rewrite *b* and *x* as powers of the same base.)

a.	log ₁₂₅ 25	b.	log ₈ 32
c.	log ₂₇ 81	d.	log ₄ 128

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Let $f(x) = \sqrt[3]{x}$. Write a rule for *g* that represents the indicated transformation of the graph of *f*. *(Section 5.3)*

- **72.** g(x) = -f(x)
- **74.** g(x) = f(-x) + 3

73. $g(x) = f(\frac{1}{2}x)$ **75.** g(x) = f(x + 2)

Identify the function family to which f belongs. Compare the graph of f to the graph of its parent function. (Section 1.1)

