2.1 Transformations of Quadratic Functions

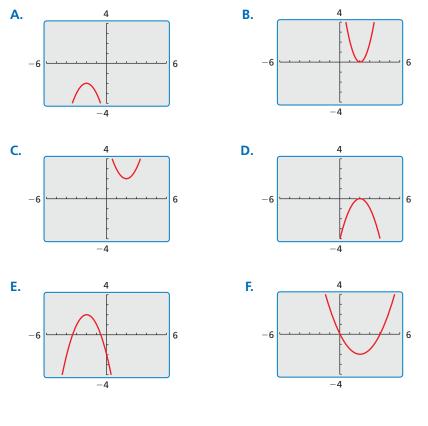
Essential Question How do the constants *a*, *h*, and *k* affect the graph of the quadratic function $g(x) = a(x - h)^2 + k$?

The parent function of the quadratic family is $f(x) = x^2$. A transformation of the graph of the parent function is represented by the function $g(x) = a(x - h)^2 + k$, where $a \neq 0$.

EXPLORATION 1 Identifying Graphs of Quadratic Functions

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Then use a graphing calculator to verify that your answer is correct.

a. $g(x) = -(x-2)^2$ **b.** $g(x) = (x-2)^2 + 2$ **c.** $g(x) = -(x+2)^2 - 2$ **d.** $g(x) = 0.5(x-2)^2 - 2$ **e.** $g(x) = 2(x-2)^2$ **f.** $g(x) = -(x+2)^2 + 2$

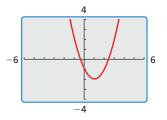


LOOKING FOR STRUCTURE

To be proficient in math, you need to look closely to discern a pattern or structure.

Communicate Your Answer

- **2.** How do the constants *a*, *h*, and *k* affect the graph of the quadratic function $g(x) = a(x h)^2 + k$?
- **3.** Write the equation of the quadratic function whose graph is shown at the right. Explain your reasoning. Then use a graphing calculator to verify that your equation is correct.



2.1 Lesson

Core Vocabulary

quadratic function, *p. 48* parabola, *p. 48* vertex of a parabola, *p. 50* vertex form, *p. 50*

Previous

transformations

What You Will Learn

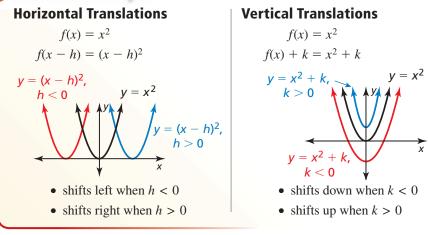
- Describe transformations of quadratic functions.
- Write transformations of quadratic functions.

Describing Transformations of Quadratic Functions

A **quadratic function** is a function that can be written in the form $f(x) = a(x - h)^2 + k$, where $a \neq 0$. The U-shaped graph of a quadratic function is called a **parabola**.

In Section 1.1, you graphed quadratic functions using tables of values. You can also graph quadratic functions by applying transformations to the graph of the parent function $f(x) = x^2$.

G Core Concept



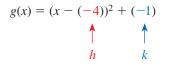
EXAMPLE 1

Translations of a Quadratic Function

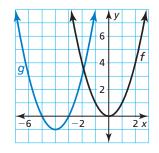
Describe the transformation of $f(x) = x^2$ represented by $g(x) = (x + 4)^2 - 1$. Then graph each function.

SOLUTION

Notice that the function is of the form $g(x) = (x - h)^2 + k$. Rewrite the function to identify *h* and *k*.



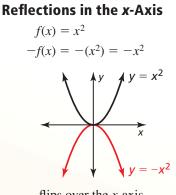
Because h = -4 and k = -1, the graph of g is a translation 4 units left and 1 unit down of the graph of f.



Monitoring Progress Help in English and Spanish at BigldeasMath.com

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

1. $g(x) = (x-3)^2$ **2.** $g(x) = (x-2)^2 - 2$ **3.** $g(x) = (x+5)^2 + 1$



flips over the x-axis

Horizontal Stretches and Shrinks Vertical Stretches and Shrinks

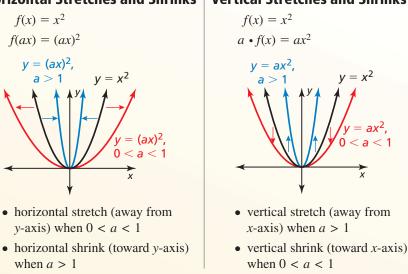
Reflections in the y-Axis

 $f(-x) = (-x)^2 = x^2$

 $y = x^2$ is its own reflection

 $f(x) = x^2$

in the y-axis.



EXAMPLE 2

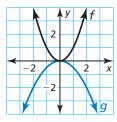
Transformations of Quadratic Functions

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

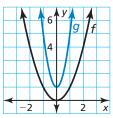
a. $g(x) = -\frac{1}{2}x^2$

b. $g(x) = (2x)^2 + 1$

- **SOLUTION**
- a. Notice that the function is of the form $g(x) = -ax^2$, where $a = \frac{1}{2}$.
 - So, the graph of g is a reflection in the *x*-axis and a vertical shrink by a factor of $\frac{1}{2}$ of the graph of *f*.



- **b.** Notice that the function is of the form $g(x) = (ax)^2 + k$, where a = 2and k = 1.
 - So, the graph of *g* is a horizontal shrink by a factor of $\frac{1}{2}$ followed by a translation 1 unit up of the graph of *f*.



LOOKING FOR **STRUCTURE**

In Example 2b, notice that $g(x) = 4x^2 + 1$. So, you can also describe the graph of q as a vertical stretch by a factor of 4 followed by a translation 1 unit up of the graph of f.

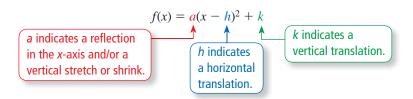
Monitoring Progress Help in English and Spanish at BigldeasMath.com

Describe the transformation of $f(x) = x^2$ represented by *g*. Then graph each function.

4.
$$g(x) = \left(\frac{1}{3}x\right)^2$$
 5. $g(x) = 3(x-1)^2$ **6.** $g(x) = -(x+3)^2 + 2$

Writing Transformations of Quadratic Functions

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the **vertex**. The **vertex form** of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \neq 0$ and the vertex is (h, k).



EXAMPLE 3

Writing a Transformed Quadratic Function

Let the graph of g be a vertical stretch by a factor of 2 and a reflection in the x-axis, followed by a translation 3 units down of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.

SOLUTION

Method 1 Identify how the transformations affect the constants in vertex form.

reflection in x-axis vertical stretch by 2 $\begin{cases} a = -2 \\ cmmodel{x} = -3 \end{cases}$ translation 3 units down k = -3

Write the transformed function.

 $g(x) = a(x - h)^2 + k$ Vertex form of a quadratic function $= -2(x - 0)^2 + (-3)$ Substitute -2 for a, 0 for h, and -3 for k. $= -2x^2 - 3$ Simplify.

The transformed function is $g(x) = -2x^2 - 3$. The vertex is (0, -3).

Method 2 Begin with the parent function and apply the transformations one at a time in the stated order.

First write a function h that represents the reflection and vertical stretch of f.

$$h(x) = -2 \cdot f(x)$$

Multiply the output by -2.
$$= -2x^2$$

Substitute x² for f(x).

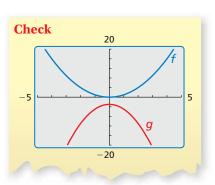
Then write a function g that represents the translation of h.

$$g(x) = h(x) - 3$$

Subtract 3 from the output.
$$= -2x^2 - 3$$

Substitute $-2x^2$ for $h(x)$.

The transformed function is $g(x) = -2x^2 - 3$. The vertex is (0, -3).



EXAMPLE 4

Writing a Transformed Quadratic Function

REMEMBER

To multiply two binomials, use the FOIL Method. First Inner

 $x^2 + 2x + x + 2$ Outer Last Let the graph of g be a translation 3 units right and 2 units up, followed by a reflection in the y-axis of the graph of $f(x) = x^2 - 5x$. Write a rule for g.

SOLUTION

Step 1 First write a function *h* that represents the translation of *f*.

h(x) = f(x - 3) + 2Subtract 3 from the input. Add 2 to the output. $= (x - 3)^2 - 5(x - 3) + 2$ Replace x with x - 3 in f(x). $= x^2 - 11x + 26$ Simplify.

Step 2 Then write a function *g* that represents the reflection of *h*.

g(x) = h(-x)	Multiply the input by -1 .
$= (-x)^2 - 11(-x) + 26$	Replace x with $-x$ in $h(x)$.
$= x^2 + 11x + 26$	Simplify.

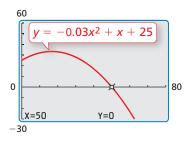
EXAMPLE 5 **Modeling with Mathematics**

The height *h* (in feet) of water spraying from a fire hose can be modeled by $h(x) = -0.03x^2 + x + 25$, where x is the horizontal distance (in feet) from the fire truck. The crew raises the ladder so that the water hits the ground 10 feet farther from the fire truck. Write a function that models the new path of the water.

SOLUTION

- **1.** Understand the Problem You are given a function that represents the path of water spraying from a fire hose. You are asked to write a function that represents the path of the water after the crew raises the ladder.
- 2. Make a Plan Analyze the graph of the function to determine the translation of the ladder that causes water to travel 10 feet farther. Then write the function.
- **3.** Solve the Problem Use a graphing calculator to graph the original function.

Because h(50) = 0, the water originally hits the ground 50 feet from the fire truck. The range of the function in this context does not include negative values. However, by observing that h(60) = -23, you can determine that a translation 23 units (feet) up causes the water to travel 10 feet farther from the fire truck.



- g(x) = h(x) + 23Add 23 to the output. $= -0.03x^2 + x + 48$ Substitute for h(x) and simplify.
- The new path of the water can be modeled by $g(x) = -0.03x^2 + x + 48$.
- **4.** Look Back To check that your solution is correct, verify that g(60) = 0.

$$g(60) = -0.03(60)^2 + 60 + 48 = -108 + 60 + 48 = 0$$

Monitoring Progress (1) Help in English and Spanish at BigldeasMath.com

- 7. Let the graph of g be a vertical shrink by a factor of $\frac{1}{2}$ followed by a translation 2 units up of the graph of $f(x) = x^2$. Write a rule for \tilde{g} and identify the vertex.
- **8.** Let the graph of g be a translation 4 units left followed by a horizontal shrink by a factor of $\frac{1}{3}$ of the graph of $f(x) = x^2 + x$. Write a rule for g.
- 9. WHAT IF? In Example 5, the water hits the ground 10 feet closer to the fire truck after lowering the ladder. Write a function that models the new path of the water.

-Vocabulary and Core Concept Check

- 1. COMPLETE THE SENTENCE The graph of a quadratic function is called a(n) _
- **2.** VOCABULARY Identify the vertex of the parabola given by $f(x) = (x + 2)^2 4$.

Monitoring Progress and Modeling with Mathematics

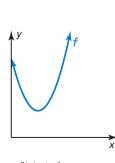
In Exercises 3–12, describe the transformation of $f(x) = x^2$ represented by *g*. Then graph each function. (*See Example 1.*)

- **3.** $g(x) = x^2 3$ **4.** $g(x) = x^2 + 1$ **5.** $g(x) = (x + 2)^2$ **6.** $g(x) = (x - 4)^2$ **7.** $g(x) = (x - 1)^2$ **8.** $g(x) = (x + 3)^2$ **9.** $g(x) = (x + 6)^2 - 2$ **10.** $g(x) = (x - 9)^2 + 5$
- **11.** $g(x) = (x 7)^2 + 1$ **12.** $g(x) = (x + 10)^2 3$

ANALYZING RELATIONSHIPS

In Exercises 13–16, match the function with the correct transformation of the graph of *f*. Explain your reasoning.

1



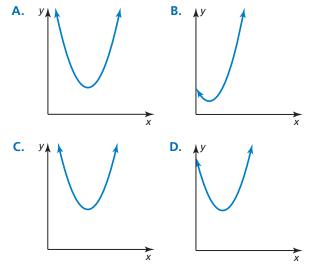
- 1

13.
$$y = f(x - 1)$$

14.
$$y = f(x) + 1$$

15.
$$y = f(x - 1) +$$

16.
$$y = f(x + 1)$$



In Exercises 17–24, describe the transformation of $f(x) = x^2$ represented by *g*. Then graph each function. (*See Example 2.*)

17. $g(x) = -x^2$	18. $g(x) = (-x)^2$
19. $g(x) = 3x^2$	20. $g(x) = \frac{1}{3}x^2$
21. $g(x) = (2x)^2$	22. $g(x) = -(2x)^2$
23. $g(x) = \frac{1}{5}x^2 - 4$	24. $g(x) = \frac{1}{2}(x-1)^2$

ERROR ANALYSIS In Exercises 25 and 26, describe and correct the error in analyzing the graph of $f(x) = -6x^2 + 4$.

The graph is a reflection in the y-axis and a vertical stretch by a factor of 6, followed by a translation 4 units up of the graph of the parent quadratic function.

The graph is a translation 4 units down, followed by a vertical stretch by a factor of 6 and a reflection in the x-axis of the graph of the parent quadratic function.

USING STRUCTURE In Exercises 27–30, describe the transformation of the graph of the parent quadratic function. Then identify the vertex.

- **27.** $f(x) = 3(x+2)^2 + 1$
- **28.** $f(x) = -4(x+1)^2 5$
- **29.** $f(x) = -2x^2 + 5$

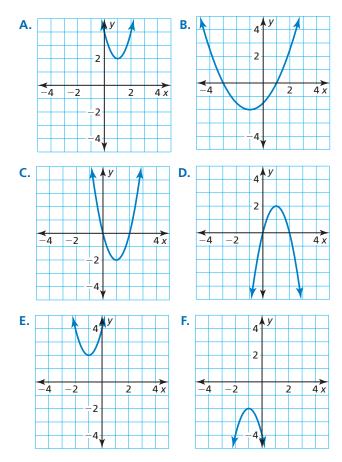
30.
$$f(x) = \frac{1}{2}(x-1)^2$$

In Exercises 31–34, write a rule for g described by the transformations of the graph of f. Then identify the vertex. (See Examples 3 and 4.)

- **31.** $f(x) = x^2$; vertical stretch by a factor of 4 and a reflection in the *x*-axis, followed by a translation 2 units up
- **32.** $f(x) = x^2$; vertical shrink by a factor of $\frac{1}{3}$ and a reflection in the *y*-axis, followed by a translation 3 units right
- **33.** $f(x) = 8x^2 6$; horizontal stretch by a factor of 2 and a translation 2 units up, followed by a reflection in the *y*-axis
- **34.** $f(x) = (x + 6)^2 + 3$; horizontal shrink by a factor of $\frac{1}{2}$ and a translation 1 unit down, followed by a reflection in the *x*-axis

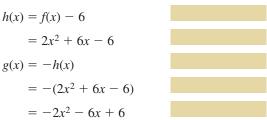
USING TOOLS In Exercises 35–40, match the function with its graph. Explain your reasoning.

- **35.** $g(x) = 2(x-1)^2 2$ **36.** $g(x) = \frac{1}{2}(x+1)^2 2$
- **37.** $g(x) = -2(x-1)^2 + 2$
- **38.** $g(x) = 2(x + 1)^2 + 2$ **39.** $g(x) = -2(x + 1)^2 2$
- **40.** $g(x) = 2(x-1)^2 + 2$

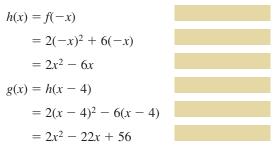


JUSTIFYING STEPS In Exercises 41 and 42, justify each step in writing a function *g* based on the transformations of $f(x) = 2x^2 + 6x$.

41. translation 6 units down followed by a reflection in the *x*-axis



42. reflection in the *y*-axis followed by a translation 4 units right

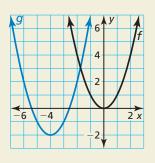


43. MODELING WITH MATHEMATICS The function $h(x) = -0.03(x - 14)^2 + 6$ models the jump of a red kangaroo, where x is the horizontal distance traveled (in feet) and h(x) is the height (in feet). When the kangaroo jumps from a higher location, it lands 5 feet farther away. Write a function that models the second jump. (See Example 5.)

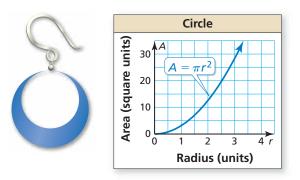
44. MODELING WITH MATHEMATICS The function $f(t) = -16t^2 + 10$ models the height (in feet) of an object t seconds after it is dropped from a height of 10 feet on Earth. The same object dropped from the same height on the moon is modeled by $g(t) = -\frac{8}{3}t^2 + 10$. Describe the transformation of the graph of f to obtain g. From what height must the object be dropped on the moon so it hits the ground at the same time as on Earth?

- **45. MODELING WITH MATHEMATICS** Flying fish use their pectoral fins like airplane wings to glide through the air.
 - **a.** Write an equation of the form $y = a(x h)^2 + k$ with vertex (33, 5) that models the flight path, assuming the fish leaves the water at (0, 0).
 - **b.** What are the domain and range of the function? What do they represent in this situation?
 - **c.** Does the value of *a* change when the flight path has vertex (30, 4)? Justify your answer.

46. HOW DO YOU SEE IT? Describe the graph of g as a transformation of the graph of $f(x) = x^2$.



- **47. COMPARING METHODS** Let the graph of *g* be a translation 3 units up and 1 unit right followed by a vertical stretch by a factor of 2 of the graph of $f(x) = x^2$.
 - **a.** Identify the values of *a*, *h*, and *k* and use vertex form to write the transformed function.
 - **b.** Use function notation to write the transformed function. Compare this function with your function in part (a).
 - **c.** Suppose the vertical stretch was performed first, followed by the translations. Repeat parts (a) and (b).
 - **d.** Which method do you prefer when writing a transformed function? Explain.
- **48.** THOUGHT PROVOKING A jump on a pogo stick with a conventional spring can be modeled by $f(x) = -0.5(x 6)^2 + 18$, where x is the horizontal distance (in inches) and f(x) is the vertical distance (in inches). Write at least one transformation of the function and provide a possible reason for your transformation.
- **49. MATHEMATICAL CONNECTIONS** The area of a circle depends on the radius, as shown in the graph. A circular earring with a radius of *r* millimeters has a circular hole with a radius of $\frac{3r}{4}$ millimeters. Describe a transformation of the graph below that models the area of the blue portion of the earring.



Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

