Essential Question How can you display data in a way that helps

you make decisions?

EXPLORATION 1 Displaying Data

Work with a partner. Analyze the data and then create a display that best represents the data. Explain your choice of data display.

a. A group of schools in New England participated in a 2-month study and reported 3962 animals found dead along roads.

birds: 307	mammals: 2746	amphibians: 145
reptiles: 75	unknown: 689	

b. The data below show the numbers of black bears killed on a state's roads from 1993 to 2012.

1993: 30	2000: 47	2007: 99
1994: 37	2001: 49	2008: 129
1995: 46	2002: 61	2009: 111
1996: 33	2003: 74	2010: 127
1997: 43	2004: 88	2011: 141
1998: 35	2005: 82	2012: 135
1999: 43	2006: 109	

c. A 1-week study along a 4-mile section of road found the following weights (in pounds) of raccoons that had been killed by vehicles.

13.4	14.8	17.0	12.9	21.3	21.5	16.8	14.8
15.2	18.7	18.6	17.2	18.5	9.4	19.4	15.7
14.5	9.5	25.4	21.5	17.3	19.1	11.0	12.4
20.4	13.6	17.5	18.5	21.5	14.0	13.9	19.0

d. A yearlong study by volunteers in California reported the following numbers of animals killed by motor vehicles.

raccoons: 1693	gray squirrels: 715
skunks: 1372	cottontail rabbits: 629
ground squirrels: 845	barn owls: 486
opossum: 763	jackrabbits: 466
deer: 761	gopher snakes: 363

Communicate Your Answer

- 2. How can you display data in a way that helps you make decisions?
- **3.** Use the Internet or some other reference to find examples of the following types of data displays.

bar graph	circle graph	scatter plot
stem-and-leaf plot	pictograph	line graph
box-and-whisker plot	histogram	dot plot

USING TOOLS STRATEGICALLY

To be proficient in math, you need to identify relevant external mathematical resources.

11.5 Lesson

Core Vocabulary

qualitative (categorical) data, p. 618 quantitative data, p. 618 misleading graph, p. 620

STUDY TIP

Just because a frequency count can be shown for a data set does not make it quantitative. A frequency count can be shown for both qualitative and quantitative data.

What You Will Learn

- Classify data as quantitative or qualitative.
- Choose and create appropriate data displays.
- Analyze misleading graphs.

Classifying Data

Data sets can consist of two types of data: qualitative or quantitative.

🗿 Core Concept

Types of Data

Qualitative data, or **categorical data**, consist of labels or nonnumerical entries that can be separated into different categories. When using qualitative data, operations such as adding or finding a mean do not make sense.

Quantitative data consist of numbers that represent counts or measurements.

EXAMPLE 1 Classifying Data

Tell whether the data are *qualitative* or *quantitative*.

- **a.** prices of used cars at a dealership
- **b.** jersey numbers on a basketball team
- **c.** lengths of songs played at a concert
- **d.** zodiac signs of students in your class

SOLUTION

- **a.** Prices are numerical entries. So, the data are quantitative.
- **b.** Jersey numbers are numerical, but they are labels. It does not make sense to compare them, and you cannot measure them. So, the data are qualitative.
- c. Song lengths are numerical measurements. So, the data are quantitative.
- **d.** Zodiac signs are nonnumerical entries that can be separated into different categories. So, the data are qualitative.

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

Tell whether the data are qualitative or quantitative. Explain your reasoning.

- 1. telephone numbers in a directory 2. ages of patients at a hospital
- **3.** lengths of videos on a website **4.** types of flowers at a florist

Qualitative and quantitative data can be collected from the same data source, as shown below. You can use these types of data together to obtain a more accurate description of a population.

Data Source	Quantitative Data	Qualitative Data
a student	How much do you earn per hour at your job? \$10.50	What is your occupation? painter
a house	How many square feet of living space is in the house? 2500 ft ²	In what city is the house located? Chicago

Choosing and Creating Appropriate Data Displays

As shown on page 584, you have learned a variety of ways to display data sets graphically. Choosing an appropriate data display can depend on whether the data are qualitative or quantitative.

EXAMPLE 2

a.

Choosing and Creating a Data Display

Analyze the data and then create a display that best represents the data. Explain your reasoning.

Eye Color Survey		b.	Speeds of Vehicles (mi			
Color	Number of students		Interstate A		Interstate	
brown	63		65	67	67	72
blue	37		68	71	70	78
biue	51		72	70	65	71
hazel	25		68	65	71	80
	10		65	68	84	81
green	10		75	82	77	79
gray	3		68	59	69	70
1	2		62	68	66	69
amber	2		75	80	73	75
			77	75	84	79

SOLUTION

- a. A circle graph is one appropriate way to display this qualitative data. It shows data as parts of a whole.
 - **Step 1** Find the angle measure for each section of the circle graph by multiplying the fraction of students who have each eye color by 360°. Notice that there are 63 + 37 + 25 + 10 + 3 + 2 = 140 students in the survey.

Brown:
$$\frac{63}{140} \cdot 360^{\circ} \approx 162^{\circ}$$
 Blue: $\frac{37}{140} \cdot 360^{\circ} \approx 95^{\circ}$ **Hazel:** $\frac{25}{140} \cdot 360^{\circ} \approx 64^{\circ}$
Green: $\frac{10}{140} \cdot 360^{\circ} \approx 26^{\circ}$ **Gray:** $\frac{3}{140} \cdot 360^{\circ} \approx 8^{\circ}$ **Amber:** $\frac{2}{140} \cdot 360^{\circ} \approx 5^{\circ}$

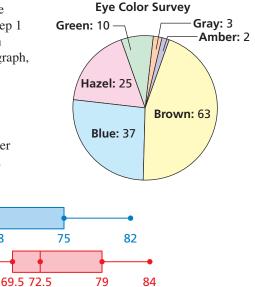
- **Step 2** Use a protractor to draw the angle measures found in Step 1 on a circle. Then label each section and title the circle graph, as shown.
- **b.** A double box-and-whisker plot is one appropriate way to display this quantitative data. Use the five-number summary of each data set to create a double box-and-whisker plot.

59

60

66 68

70


65

65

Interstate A

Interstate B

≺ | | | | 55

Speed

(mi/h)

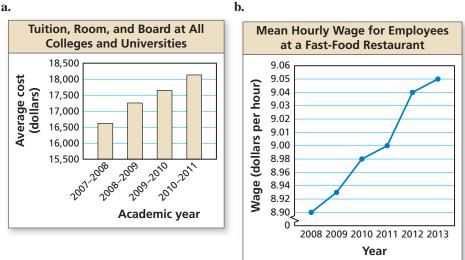
80

75

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

- 5. Display the data in Example 2(a) in another way.
- **6.** Display the data in Example 2(b) in another way.

Analyzing Misleading Graphs


Just as there are several ways to display data accurately using graphs, there are several ways to display data that are misleading. A **misleading graph** is a statistical graph that is not drawn appropriately. This may occur when the creator of a graph wants to give viewers the impression that results are better than they actually are. Below are some questions you can ask yourself when analyzing a statistical graph that will help you recognize when a graph is trying to deceive or mislead.

- Does the graph have a title?
- Does the graph need a key?
- Are the numbers of the scale evenly spaced?
- Are all the axes or sections of the graph labeled?
- Does the scale begin at zero? If not, is there a break?
- Are all the components of the graph, such as the bars, the same size?

EXAMPLE 3

Analyzing Misleading Graphs

Describe how each graph is misleading. Then explain how someone might misinterpret the graph.

SOLUTION

a. The scale on the vertical axis of the graph starts at \$15,500 and does not have a break. This makes it appear that the average cost increased rapidly for the years given.

Someone might believe that the average cost more than doubled from 2007 to 2011, when actually, it increased by only about \$1500.

b. The scale on the vertical axis has very small increments that are not equal.

Someone might believe that the greatest increase in the mean hourly wage occurred from 2011 to 2012, when the greatest increase actually occurred from 2009 to 2010.

Monitoring Progress I Help in English and Spanish at BigldeasMath.com

7. Redraw the graphs in Example 3 so they are not misleading.

Vocabulary and Core Concept Check

- 1. **OPEN-ENDED** Describe two ways that a line graph can be misleading.
- **2.** WHICH ONE DOESN'T BELONG? Which data set does *not* belong with the other three? Explain your reasoning.

ages of people attending a concert

heights of skyscrapers in a city

populations of counties in a state

breeds of dogs at a pet store

14.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–8, tell whether the data are *qualitative* or *quantitative*. Explain your reasoning. (*See Example 1.*)

- 3. brands of cars in a parking lot
- 4. weights of bears at a zoo
- 5. budgets of feature films
- **6.** file formats of documents on a computer
- 7. shoe sizes of students in your class
- 8. street addresses in a phone book

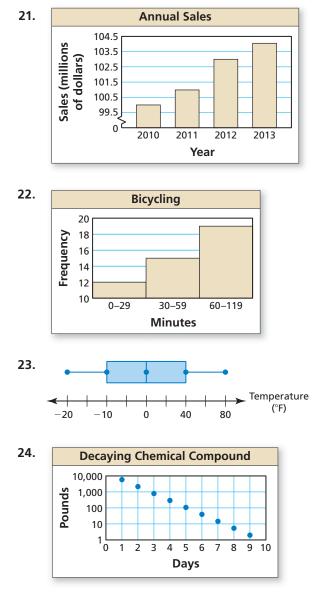
In Exercises 9–12, choose an appropriate data display for the situation. Explain your reasoning.

- 9. the number of students in a marching band each year
- **10.** a comparison of students' grades (out of 100) in two different classes
- **11.** the favorite sports of students in your class
- **12.** the distribution of teachers by age

In Exercises 13–16, analyze the data and then create a display that best represents the data. Explain your reasoning. (See Example 2.)

13.	Ages of World Cup Winners						
	2010 Men's World Cup Winner (Spain)	2011 Women's World Cup Winner (Japan)					
	29 24 23 30 32 26 28 30 26 23 32 28 22 28 24 21 27 22 25 21 24 24 27	362724202723292625322727222524232428201824					

Average Precipitation (inches)					
January	1.1	July	4.0		
February	1.5	August	4.4		
March	2.2	September	4.2		
April	3.7	October	3.5		
May	5.1	November	2.1		
June	5.5	December	1.8		

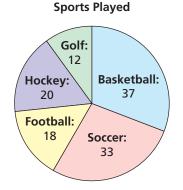

15.	Grades (out of 100) on a Test							
	96	74	97	80	62			
	84	88	53	77	75			
	89	81	52	85	63			
	87	95	59	83	100			

16.	Colors of Cars that Drive by Your House						
	white 25 green						
	red	12	silver/gray	27			
	yellow	1	blue	6			
	black	21	brown/biege	5			

- **17. DISPLAYING DATA** Display the data in Exercise 13 in another way.
- **18. DISPLAYING DATA** Display the data in Exercise 14 in another way.
- **19. DISPLAYING DATA** Display the data in Exercise 15 in another way.


20. DISPLAYING DATA Display the data in Exercise 16 in another way.

In Exercises 21–24, describe how the graph is misleading. Then explain how someone might misinterpret the graph. (See Example 3.)



- **25. DISPLAYING DATA** Redraw the graph in Exercise 21 so it is not misleading.
- **26. DISPLAYING DATA** Redraw the graph in Exercise 22 so it is not misleading.

- **27. MAKING AN ARGUMENT** A data set gives the ages of voters for a city election. Classmate A says the data should be displayed in a bar graph, while Classmate B says the data would be better displayed in a histogram. Who is correct? Explain.
- **28. HOW DO YOU SEE IT?** The manager of a company sees the graph shown and concludes that the company is experiencing a decline. What is missing from the graph? Explain why the manager may be mistaken.

29. REASONING A survey asked 100 students about the sports they play. The results are shown in the circle graph.

- **a.** Explain why the graph is misleading.
- **b.** What type of data display would be more appropriate for the data? Explain.
- **30. THOUGHT PROVOKING** Use a spreadsheet program to create a type of data display that is not used in this section.
- **31. REASONING** What type of data display shows the mode of a data set?

Maintaining Mathematical Proficiency Reviewing what you learned in previous grades and lessons

Determine whether the relation is a function. Explain. (Section 3.1)

32. (-5, -1), (-6, 0), (-5, 1), (-2, 2), (3, 3) **33.** (0, 1), (4, 0), (8, 1), (12, 2), (16, 3)