7.1 Adding and Subtracting Polynomials

Essential Question How can you add and subtract polynomials?

EXPLORATION 1 Adding Polynomials

Work with a partner. Write the expression modeled by the algebra tiles in each step.

Step 1

\[(3x + 2) + (x - 5) \]

Step 2

Step 3

Step 4

EXPLORATION 2 Subtracting Polynomials

Work with a partner. Write the expression modeled by the algebra tiles in each step.

Step 1

\[(x^2 + 2x + 2) - (x - 1) \]

Step 2

Step 3

Step 4

Step 5

Communicate Your Answer

3. How can you add and subtract polynomials?

4. Use your methods in Question 3 to find each sum or difference.

 a. \((x^2 + 2x - 1) + (2x^2 - 2x + 1)\)

 b. \((4x + 3) + (x - 2)\)

 c. \((x^2 + 2) - (3x^2 + 2x + 5)\)

 d. \((2x - 3x) - (x^2 - 2x + 4)\)
What You Will Learn

- Find the degrees of monomials.
- Classify polynomials.
- Add and subtract polynomials.
- Solve real-life problems.

Finding the Degrees of Monomials

A **monomial** is a number, a variable, or the product of a number and one or more variables with whole number exponents.

The **degree of a monomial** is the sum of the exponents of the variables in the monomial. The degree of a nonzero constant term is 0. The constant 0 does not have a degree.

Monomial Degree

<table>
<thead>
<tr>
<th>Monomial</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3x</td>
<td>1</td>
</tr>
<tr>
<td>(\frac{1}{2}ab^2)</td>
<td>1 + 2 = 3</td>
</tr>
<tr>
<td>(-1.8m^5)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Not a monomial</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 + x</td>
<td>A sum is not a monomial.</td>
</tr>
<tr>
<td>(\frac{2}{n})</td>
<td>A monomial cannot have a variable in the denominator.</td>
</tr>
<tr>
<td>4^2</td>
<td>A monomial cannot have a variable exponent.</td>
</tr>
<tr>
<td>(x^{-1})</td>
<td>The variable must have a whole number exponent.</td>
</tr>
</tbody>
</table>

Example 1

Finding the Degrees of Monomials

Find the degree of each monomial.

- a. \(5x^2 \)
- b. \(-\frac{1}{2}xy^3 \)
- c. \(8x^3y^3 \)
- d. \(-3\)

SOLUTION

a. The exponent of \(x \) is 2.

- So, the degree of the monomial is 2.

b. The exponent of \(x \) is 1, and the exponent of \(y \) is 3.

- So, the degree of the monomial is 1 + 3, or 4.

c. The exponent of \(x \) is 3, and the exponent of \(y \) is 3.

- So, the degree of the monomial is 3 + 3, or 6.

d. You can rewrite \(-3\) as \(-3x^0\).

- So, the degree of the monomial is 0.

Monitoring Progress

Find the degree of the monomial.

1. \(-3x^4\)
2. \(7e^3d^2\)
3. \(\frac{5}{3}y\)
4. \(-20.5\)
Classifying Polynomials

Core Concept

Polynomials

A **polynomial** is a monomial or a sum of monomials. Each monomial is called a **term** of the polynomial. A polynomial with two terms is a **binomial**. A polynomial with three terms is a **trinomial**.

<table>
<thead>
<tr>
<th>Binomial</th>
<th>Trinomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5x + 2$</td>
<td>$x^2 + 5x + 2$</td>
</tr>
</tbody>
</table>

The **degree of a polynomial** is the greatest degree of its terms. A polynomial in one variable is in **standard form** when the exponents of the terms decrease from left to right. When you write a polynomial in standard form, the coefficient of the first term is the **leading coefficient**.

Example 2 Writing a Polynomial in Standard Form

Write $15x - x^3 + 3$ in standard form. Identify the degree and leading coefficient of the polynomial.

Solution

Consider the degree of each term of the polynomial.

- Degree is 3.
- Degree is 1.
- Degree is 0.

You can write the polynomial in standard form as $-x^3 + 15x + 3$. The greatest degree is 3, so the degree of the polynomial is 3, and the leading coefficient is -1.

Example 3 Classifying Polynomials

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

a. $-3z^4$

b. $4 + 5x^2 - x$

c. $8q + q^5$

Solution

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Standard Form</th>
<th>Degree</th>
<th>Type of Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. $-3z^4$</td>
<td>$-3z^4$</td>
<td>4</td>
<td>monomial</td>
</tr>
<tr>
<td>b. $4 + 5x^2 - x$</td>
<td>$5x^2 - x + 4$</td>
<td>2</td>
<td>trinomial</td>
</tr>
<tr>
<td>c. $8q + q^5$</td>
<td>$q^5 + 8q$</td>
<td>5</td>
<td>binomial</td>
</tr>
</tbody>
</table>

Monitoring Progress

Help in English and Spanish at BigIdeasMath.com

Write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms.

5. $4 - 9z$

6. $t^2 - t^3 - 10t$

7. $2.8x + x^3$
Adding and Subtracting Polynomials

A set of numbers is closed under an operation when the operation performed on any two numbers in the set results in a number that is also in the set. For example, the set of integers is closed under addition, subtraction, and multiplication. This means that if \(a \) and \(b \) are two integers, then \(a + b \), \(a - b \), and \(ab \) are also integers.

The set of polynomials is closed under addition and subtraction. So, the sum or difference of any two polynomials is also a polynomial.

To add polynomials, add like terms. You can use a vertical or a horizontal format.

Example 4 Adding Polynomials

Find the sum.

\[
\begin{align*}
\text{a. } & (2x^3 - 5x^2 + x) + (2x^3 + x^2 - 1) \\
\text{b. } & (3x^2 + x - 6) + (x^2 + 4x + 10)
\end{align*}
\]

Solution

a. Vertical format: Align like terms vertically and add.

\[
\begin{align*}
2x^3 & - 5x^2 + x \\
+ & x^3 + 2x^2 - 1 \\
3x^3 - 3x^2 + x & - 1
\end{align*}
\]

The sum is \(3x^3 - 3x^2 + x - 1 \).

b. Horizontal format: Group like terms and simplify.

\[
(3x^2 + x - 6) + (x^2 + 4x + 10) = (3x^2 + x^2) + (x + 4x) + (-6 + 10) \\
= 4x^2 + 5x + 4
\]

The sum is \(4x^2 + 5x + 4 \).

To subtract a polynomial, add its opposite. To find the opposite of a polynomial, multiply each of its terms by \(-1\).

Example 5 Subtracting Polynomials

Find the difference.

\[
\begin{align*}
\text{a. } & (4n^2 + 5) - (-2n^2 + 2n - 4) \\
\text{b. } & (4x^2 - 3x + 5) - (3x^2 - x - 8)
\end{align*}
\]

Solution

a. Vertical format: Align like terms vertically and subtract.

\[
\begin{align*}
4n^2 & + 5 \\
- (-2n^2 + 2n - 4) & \Rightarrow + 2n^2 - 2n + 4 \\
6n^2 - 2n + 9
\end{align*}
\]

The difference is \(6n^2 - 2n + 9 \).

b. Horizontal format: Group like terms and simplify.

\[
(4x^2 - 3x + 5) - (3x^2 - x - 8) = 4x^2 - 3x + 5 - 3x^2 + x + 8 \\
= (4x^2 - 3x^2) + (-3x + x) + (5 + 8) \\
= x^2 - 2x + 13
\]

The difference is \(x^2 - 2x + 13 \).
Monitoring Progress

Find the sum or difference.

8. \((b - 10) + (4b - 3)\)
9. \((x^2 - x - 2) + (7x^2 - x)\)
10. \((p^2 + p + 3) - (-4p^2 - p + 3)\)
11. \((-k + 5) - (3k^2 - 6)\)

Solving Real-Life Problems

EXAMPLE 6 Solving a Real-Life Problem

A penny is thrown straight down from a height of 200 feet. At the same time, a paintbrush is dropped from a height of 100 feet. The polynomials represent the heights (in feet) of the objects after \(t\) seconds.

\[
\begin{align*}
\text{Penny} & : -16t^2 - 40t + 200 \\
\text{Paintbrush} & : -(16t^2 + 100) + 16t^2 - 100
\end{align*}
\]

\[= -40t + 100\]

The polynomial \(-40t + 100\) represents the distance between the objects after \(t\) seconds.

a. Write a polynomial that represents the distance between the penny and the paintbrush after \(t\) seconds.

b. Interpret the coefficients of the polynomial in part (a).

SOLUTION

a. To find the distance between the objects after \(t\) seconds, subtract the polynomials.

\[
\begin{align*}
\text{Distance} & = \text{Penny} - \text{Paintbrush} \\
& = -16t^2 - 40t + 200 - (16t^2 + 100) + 16t^2 - 100 \\
& = -40t + 100
\end{align*}
\]

b. When \(t = 0\), the distance between the objects is \(-40(0) + 100 = 100\) feet. So, the constant term 100 represents the distance between the penny and the paintbrush when both objects begin to fall.

As the value of \(t\) increases by 1, the value of \(-40t + 100\) decreases by 40. This means that the objects become 40 feet closer to each other each second. So, \(-40\) represents the amount that the distance between the objects changes each second.

Monitoring Progress

12. **WHAT IF?** The polynomial \(-16t^2 - 25t + 200\) represents the height of the penny after \(t\) seconds.

a. Write a polynomial that represents the distance between the penny and the paintbrush after \(t\) seconds.

b. Interpret the coefficients of the polynomial in part (a).
In Exercises 5–12, find the degree of the monomial.
(See Example 1.)

5. \(4g\) \hspace{1cm} 6. \(23x^4\)
6. \(-1.75k^2\) \hspace{1cm} 8. \(-\frac{4}{9}\)
9. \(s^8t\) \hspace{1cm} 10. \(8m^2n^4\)
11. \(9xy^3z^7\) \hspace{1cm} 12. \(-3q^4rs^6\)

In Exercises 13–20, write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms. (See Examples 2 and 3.)

13. \(6c^3 + 2e^4 - c\) \hspace{1cm} 14. \(4w^{11} - w^{12}\)
15. \(7 + 3p^2\) \hspace{1cm} 16. \(8d^2 - 2 - 4d^3\)
17. \(3t^8\) \hspace{1cm} 18. \(5z + 2c^3 + 3z^4\)
19. \(\pi r^2 - \frac{5}{3}r^8 + 2r^5\) \hspace{1cm} 20. \(\sqrt{7n^4}\)

21. **MODELING WITH MATHEMATICS** The expression \(\frac{4}{3}\pi r^3\) represents the volume of a sphere with radius \(r\). Why is this expression a monomial? What is its degree?

22. **MODELING WITH MATHEMATICS** The amount of money you have after investing \(\$400\) for 8 years and \(\$600\) for 6 years at the same interest rate is represented by \(400x^8 + 600x^6\), where \(x\) is the growth factor. Classify the polynomial by the number of terms. What is its degree?

In Exercises 23–30, find the sum. (See Example 4.)

23. \((5y + 4) + (-2y + 6)\)
24. \((-8x - 12) + (9x + 4)\)
25. \((2m^2 - 5n - 6) + (-n^2 - 3n + 11)\)
26. \((-3p^3 + 5p^2 - 2p) + (-p^3 - 8p^2 - 15p)\)
27. \((3g^2 - g) + (3g^2 - 8g + 4)\)
28. \((9r^2 + 4r - 7) + (3r^2 - 3r)\)
29. \((4a - a^3 - 3) + (2a^3 - 5a^2 + 8)\)
30. \((x^3 - 2x - 9) + (2x^2 - 6x^3 + x)\)

In Exercises 31–38, find the difference. (See Example 5.)

31. \((d - 9) - (3d - 1)\)
32. \((6x + 9) - (7x + 1)\)
33. \((y^2 - 4y + 9) - (3y^2 - 6y - 9)\)
34. \((4m^2 - m + 2) - (-3m^2 + 10m + 4)\)
35. \((k^3 - 7k + 2) - (k^3 - 12)\)
36. \((-r - 10) - (-4r^3 + r^2 + 7r)\)
37. \((t^4 - t^2 + t) - (12 - 9t^2 - 7t)\)
38. \((4d - 6d^3 + 3d^2) - (10d^3 + 7d - 2)\)

ERROR ANALYSIS In Exercises 39 and 40, describe and correct the error in finding the sum or difference.

39.

\[
(x^2 + x) - (2x^2 - 3x) = x^2 + x - 2x^2 - 3x
= (x^2 - 2x^2) + (x - 3x)
= -x^2 - 2x
\]

40.

\[
x^3 - 4x^2 + 3
+ -3x^2 + 8x - 2
- 2x^3 + 4x^2 + 1
\]

MODELING WITH MATHEMATICS The cost (in dollars) of making \(b\) bracelets is represented by \(4 + 5b\). The cost (in dollars) of making \(b\) necklaces is represented by \(8b + 6\). Write a polynomial that represents how much more it costs to make \(b\) necklaces than \(b\) bracelets.

41.

MODELING WITH MATHEMATICS The number of individual memberships at a fitness center in \(m\) months is represented by \(142 + 12m\). The number of family memberships at the fitness center in \(m\) months is represented by \(52 + 6m\). Write a polynomial that represents the total number of memberships at the fitness center.

In Exercises 43–46, find the sum or difference.

43. \((2s^2 - 5st - t^2) - (s^2 + 7st - t^2)\)
44. \((a^2 - 3ab + 2b^2) + (-4a^2 + 5ab - b^2)\)
45. \((c^2 - 6d^2) + (c^2 - 2cd + 2d^2)\)
46. \((-x^2 + 9xy) - (x^2 + 6xy - 8y^2)\)

REASONING In Exercises 47–50, complete the statement with always, sometimes, or never. Explain your reasoning.

47. The terms of a polynomial are _______ monomials.
48. The difference of two trinomials is _______ a trinomial.
49. A binomial is _______ a polynomial of degree 2.
50. The sum of two polynomials is _______ a polynomial.

MODELING WITH MATHEMATICS The polynomial \(-16t^2 + v_0t + s_0\) represents the height (in feet) of an object, where \(v_0\) is the initial vertical velocity (in feet per second), \(s_0\) is the initial height of the object (in feet), and \(t\) is the time (in seconds). In Exercises 51 and 52, write a polynomial that represents the height of the object.

51. You throw a water balloon from a building.
52. You bounce a tennis ball on a racket.

53. **MODELING WITH MATHEMATICS** You drop a ball from a height of 98 feet. At the same time, your friend throws a ball upward. The polynomials represent the heights (in feet) of the balls after \(t\) seconds. (See Example 6.)

\[
-16t^2 + 98
\]
\[
-16t^2 + 46t + 6
\]

a. Before the balls reach the same height, write a polynomial that represents the distance between your ball and your friend’s ball after \(t\) seconds.

b. Interpret the coefficients of the polynomial in part (a).
54. **MODELING WITH MATHEMATICS** During a 7-year period, the amounts (in millions of dollars) spent each year on buying new vehicles \(N \) and used vehicles \(U \) by United States residents are modeled by the equations
\[
N = -0.028t^3 + 0.06t^2 + 0.1t + 17
\]
\[
U = -0.38t^2 + 1.5t + 42
\]
where \(t = 1 \) represents the first year in the 7-year period.

a. Write a polynomial that represents the total amount spent each year on buying new and used vehicles in the 7-year period.

b. How much is spent on buying new and used vehicles in the fifth year?

55. **MATHEMATICAL CONNECTIONS**

Write the polynomial in standard form that represents the perimeter of the quadrilateral.

\[
3x - 2 \\
2x + 1 \\
2x \\
5x - 2
\]

56. **HOW DO YOU SEE IT?** The right side of the equation of each line is a polynomial.

\[
y = -2x + 1 \\
y = x - 2
\]

a. The absolute value of the difference of the two polynomials represents the vertical distance between points on the lines with the same \(x \)-value. Write this expression.

b. When does the expression in part (a) equal 0? How does this value relate to the graph?

57. **MAKING AN ARGUMENT** Your friend says that when adding polynomials, the order in which you add does not matter. Is your friend correct? Explain.

58. **THOUGHT PROVOKING** Write two polynomials whose sum is \(x^2 \) and whose difference is 1.

59. **REASONING** Determine whether the set is closed under the given operation. Explain.

a. the set of negative integers; multiplication

b. the set of whole numbers; addition

60. **PROBLEM SOLVING** You are building a multi-level deck.

\[
\begin{align*}
&x \text{ ft} \\
&10 \text{ ft} \\
&(x - 12) \text{ ft}
\end{align*}
\]

a. For each level, write a polynomial in standard form that represents the area of that level. Then write the polynomial in standard form that represents the total area of the deck.

b. What is the total area of the deck when \(x = 20 \)?

c. A gallon of deck sealant covers 400 square feet. How many gallons of sealant do you need to cover the deck in part (b) once? Explain.

61. **PROBLEM SOLVING** A hotel installs a new swimming pool and a new hot tub.

\[
\begin{align*}
&2x \text{ ft} \\
&(6x - 14) \text{ ft}
\end{align*}
\]

a. Write the polynomial in standard form that represents the area of the patio.

b. The patio will cost $10 per square foot. Determine the cost of the patio when \(x = 9 \).

62. Simplify the expression. (Skills Review Handbook)

\[
62. \quad 2(x - 1) + 3(x + 2)
\]

\[
63. \quad 8(4y - 3) + 2(y - 5)
\]

\[
64. \quad 5(2r + 1) - 3(-4r + 2)
\]