

You can *reflect* a point in the *x*-axis, in the *y*-axis, or in both axes.

The red points are mirror images of each other in the *x*-axis because the *x*-coordinates are the same and the *y*-coordinates are opposites. So, the red points are 3 units from the *x*-axis in opposite directions. The red points represent a *reflection in the x-axis*.

	3	y	(1,	3)		
(-4, 1)	-2				(4,	1)
(-4, 1)	-1				(4,	
≺ -4 -3 -2	0	:	1 2	2 3	3 4	1 x
	-2-					
	-3-	_	(1,	-:	3)	

The blue points are mirror images of each other

in the *y*-axis because the *y*-coordinates are the same and the *x*-coordinates are opposites. So, the blue points are 4 units from the *y*-axis in opposite directions. The blue points represent a *reflection in the y-axis*.

Reflecting a Point in the Coordinate Plane

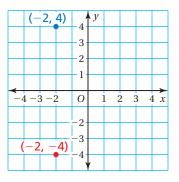
- To reflect a point in the *x*-axis, use the same *x*-coordinate and take the opposite of the *y*-coordinate.
- To reflect a point in the *y*-axis, use the same *y*-coordinate and take the opposite of the *x*-coordinate.

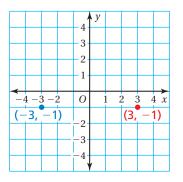
EXAMPLE (1) Reflecting Points in One Axis

a. Reflect (-2, 4) in the *x*-axis.

Plot (−2, 4).

To reflect (-2, 4) in the *x*-axis, use the same *x*-coordinate, -2, and take the opposite of the *y*-coordinate. The opposite of 4 is -4.


So, the reflection of (-2, 4) in the *x*-axis is (-2, -4).


b. Reflect (-3, -1) in the *y*-axis. Plot (-3, -1).

Plot(-3, -1).

To reflect (-3, -1) in the *y*-axis, use the same *y*-coordinate, -1, and take the opposite of the *x*-coordinate. The opposite of -3 is 3.

So, the reflection of (-3, -1) in the *y*-axis is (3, -1).

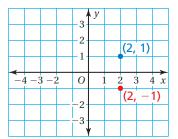
Coordinate Plane In this extension, you will • understand reflections of points in the coordinate plane. Learning Standard 6.NS.6b EXAMPLE

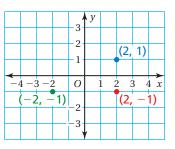
2

Reflecting a Point in Both Axes

Reflect (2, 1) in the *x*-axis followed by the *y*-axis.

Step1: First, plot (2, 1).


Step 2: Next, reflect (2, 1) in the *x*-axis. Use the same *x*-coordinate, 2, and take the opposite of the *y*-coordinate. The opposite of 1 is -1.


The point (2, 1) reflected in the *x*-axis is (2, -1).

Step 3: Finally, reflect (2, -1) in the *y*-axis. Use the same *y*-coordinate, -1, and take the opposite of the *x*-coordinate. The opposite of 2 is -2.

The point (2, -1) reflected in the *y*-axis is (-2, -1).

So, (2, 1) reflected in the *x*-axis followed by the *y*-axis is (-2, -1).

Practice

Common Error

When reflecting a

second time, be sure to

use the reflected point

and not the original

point.

Reflect the point in (a) the *x*-axis and (b) the *y*-axis.

1. (3, 2)	2. (-4, 4)	3. (-5, -6)	4. (4, −7)
5. (0, -1)	6. (-8, 0)	7. (2.5, 4.5)	8. $\left(-5\frac{1}{2},3\right)$

Reflect the point in the x-axis followed by the y-axis.

9.	(4, 5)	10.	(-1,7)
11.	(-2, -2)	12.	(6.5, -10.5)

- **13. REASONING** A point is reflected in the *x*-axis. The reflected point is (3, -9). What is the original point? What is the distance between the points?
- **14. REASONING** A point is reflected in the *y*-axis. The reflected point is (5.75, 0). What is the original point? What is the distance between the points?
- **15. a. STRUCTURE** In Exercises 9–12, reflect the point in the *y*-axis followed by the *x*-axis. Do you get the same results? Explain.
 - **b. LOGIC** Make a conjecture about how to use the coordinates of a point to find its reflection in both axes.
- **16. GEOMETRY** The vertices of a triangle are (-1, 3), (-5, 3), and (-5, 7). How would you reflect the triangle in the *x*-axis? in the *y*-axis? Give the coordinates of the reflected triangle for each case.