# **Graphing Proportional** Relationships

Learning Target: Success Criteria:

**Learning Target:** Graph proportional relationships.

- I can graph an equation that represents a proportional relationship.
- I can write an equation that represents a proportional relationship.
- I can use graphs to compare proportional relationships.

## EXPLORATION 1

#### Using a Ratio Table to Find Slope

Work with a partner. The graph shows amounts of vinegar and water that can be used to make a cleaning product.

- a. Use the graph to make a ratio table relating the quantities.Explain how the slope of the line is represented in the table.
- Make a ratio table that represents a different ratio of vinegar to water. Use the table to describe the slope of the graph of the new relationship.



# EXPLORATION 2

## **Deriving an Equation**

Work with a partner. Let (x, y) represent any point on the graph of a proportional relationship.



# **Math Practice**

Use a Graph How can you find the side lengths of the triangles in the graph?

- **a.** Describe the relationship between the corresponding side lengths of the triangles shown in the graph. Explain your reasoning.
- **b.** Use the relationship in part (a) to write an equation relating *y*, *m*, and *x*. Then solve the equation for *y*.
- **c.** What does your equation in part (b) describe? What does *m* represent? Explain your reasoning.



#### **Proportional Relationships**

In the equation y = mx, m represents the constant of proportionality, the slope, and the unit rate. **Words** When two quantities *x* and *y* are proportional, the relationship can be represented by the equation y = mx, where *m* is the constant of proportionality.

**Graph** The graph of y = mx is a line with a slope of *m* that passes through the origin.



EXAMPLE 1

## **Graphing a Proportional Relationship**

The cost y (in dollars) for x ounces of frozen yogurt is represented by y = 0.5x. Graph the equation and interpret the slope.

| x | y = 0.5x   | У   | (x, y)   |
|---|------------|-----|----------|
| 0 | y = 0.5(0) | 0   | (0, 0)   |
| 1 | y = 0.5(1) | 0.5 | (1, 0.5) |
| 2 | y = 0.5(2) | 1   | (2, 1)   |
| 3 | y=0.5(3)   | 1.5 | (3, 1.5) |

Method 2: Use the slope.

The equation shows that the slope m is 0.5. So, the graph passes through (0, 0) and (1, 0.5).

Plot the ordered pairs and draw a line through the points. Because negative values of *x* do not make sense in this context, graph in the first quadrant only.

The slope indicates that the unit cost is \$0.50 per ounce.



## Try It

**1. WHAT IF?** The cost of frozen yogurt is represented by y = 0.75x. Graph the equation and interpret the slope.

#### **EXAMPLE 2** Writing and Using an Equation

The weight y of an object on Titan, one of Saturn's moons, is proportional to the weight x of the object on Earth. An object that weighs 105 pounds on Earth would weigh 15 pounds on Titan.

#### a. Write an equation that represents the situation.

Use the point (105, 15) to find the slope of the line.

| y = mx            | Equation of a proportional relationship           |
|-------------------|---------------------------------------------------|
| 15 = m(105)       | Substitute 15 for <i>y</i> and 105 for <i>x</i> . |
| $\frac{1}{7} = m$ | Simplify.                                         |

So, an equation that represents the situation is  $y = \frac{1}{7}x$ .

b. How much would a chunk of ice that weighs 3.5 pounds on Titan weigh on Earth?

| $3.5 = \frac{1}{7}x$ | Substitute 3.5 for <i>y</i> . |
|----------------------|-------------------------------|
| 24.5 = x             | Multiply each side by 7.      |

So, the chunk of ice would weigh 24.5 pounds on Earth.

# **Try It**

2. How much would a spacecraft that weighs 3500 kilograms on Earth weigh on Titan?



Solve each exercise. Then rate your understanding of the success criteria in your journal.

#### **GRAPHING A PROPORTIONAL RELATIONSHIP** Graph the equation.

- **3.** y = 4x**4.** v = -3x**5.** v = 8x
- 6. WRITING AND USING AN EQUATION The number y of objects a machine produces is proportional to the time *x* (in minutes) that the machine runs. The machine produces five objects in four minutes.

**a.** Write an equation that represents the situation.

- **b.** Graph the equation in part (a) and interpret the slope.
- c. How many objects does the machine produce in one hour?

The slope indicates that the weight of an object on Titan is one-seventh its weight on Earth.

#### EXAMPLE 3

# **Modeling Real Life**



The distance y (in meters) that a four-person ski lift travels in x seconds is represented by the equation y = 2.5x. The graph shows the distance that a two-person ski lift travels.

#### a. Which ski lift is faster?

Identify the slope of the graph for each lift. Then interpret each slope as a unit rate.



slope =  $\frac{\text{change in } y}{\text{change in } x}$ =  $\frac{8}{4} = 2$ 

**Two-Person Lift** 

The four-person lift travels 2.5 meters per second.

The two-person lift travels 2 meters per second.

So, the four-person lift is faster than the two-person lift.

- b. Graph the equation that represents the four-person lift in the same coordinate plane as the two-person lift. Compare and interpret the steepness of each graph.
  - The graph that represents the four-person lift is steeper than the graph that represents the two-person lift. So, the four-person lift is faster.





Solve each exercise. Then rate your understanding of the success criteria in your journal.



- 7. The amount y (in liters) of water that flows over a natural waterfall in x seconds is represented by the equation y = 500x. The graph shows the number of liters of water that flow over an artificial waterfall. Which waterfall has a greater flow? Justify your answer.
- **8.** The speed of sound in air is 343 meters per second. You see lightning and hear thunder 12 seconds later.
  - **a.** Is there a proportional relationship between the amount of time that passes and your distance from a lightning strike? Explain.
  - b. Estimate your distance from the lightning strike.

# 4.3 Practice





#### Find the slope of the line.



#### Solve the equation. Check your solution.

**4.** 2x + 3x = 10 **5.**  $x + \frac{1}{6} = 4 - 2x$  **6.** 2(1 - x) = 11



USING EQUIVALENT RATIOS The graph shows amounts of water and flour that can be used to make dough. (See Exploration 1, p. 155.)

- **7.** Use the graph to make a ratio table relating the quantities. Explain how the slope of the line is represented in the table.
- **8.** Make a ratio table that represents a different ratio of flour to water. Use the table to describe the slope of the graph of the new relationship.
- **9. GRAPHING AN EQUATION** The amount *y* (in dollars) that you raise by selling *x* fundraiser tickets is represented by the equation y = 5x. Graph the equation and interpret the slope.



**IDENTIFYING PROPORTIONAL RELATIONSHIPS** Tell whether x and y are in a proportional relationship. Explain your reasoning. If so, write an equation that represents the relationship.





- 14. MODELING REAL LIFE The cost *y* (in dollars) to rent a kayak is proportional to the number *x* of hours that you rent the kayak. It costs \$27 to rent the kayak for 3 hours.
  - **a.** Write an equation that represents the situation.
  - **b.** Interpret the slope of the graph of the equation.
  - **c.** How much does it cost to rent the kayak for 5 hours? Justify your answer.





- **15. MODELING REAL LIFE** The distance y (in miles) that a truck travels on x gallons of gasoline is represented by the equation y = 18x. The graph shows the distance that a car travels.
  - **a.** Which vehicle gets better gas mileage? Explain how you found your answer.
  - **b.** How much farther can the vehicle you chose in part (a) travel on 8 gallons of gasoline?
- **16. WP PROBLEM SOLVING** Toenails grow about 13 millimeters per year. The table shows fingernail growth.

| Weeks                              | 1   | 2   | 3   | 4   |
|------------------------------------|-----|-----|-----|-----|
| Fingernail Growth<br>(millimeters) | 0.7 | 1.4 | 2.1 | 2.8 |

- a. Do fingernails or toenails grow faster? Explain.
- **b.** In the same coordinate plane, graph equations that represent the growth rates of toenails and fingernails. Compare and interpret the steepness of each graph.
- **17. (WP) REASONING** The quantities *x* and *y* are in a proportional relationship. What do you know about the ratio of *y* to *x* for any point (*x*, *y*) on the graph of *x* and *y*?
- **18. DIG DEEPER**. The graph relates the temperature change y (in degrees Fahrenheit) to the altitude change x (in thousands of feet).
  - **a.** Is the relationship proportional? Explain.
  - **b.** Write an equation of the line. Interpret the slope.
  - **c.** You are at the bottom of a mountain where the temperature is 74°F. The top of the mountain is 5500 feet above you. What is the temperature at the top of the mountain? Justify your answer.



19. CRITICAL THINKING Consider the distance equation *d* = *rt*, where *d* is the distance (in feet), *r* is the rate (in feet per second), and *t* is the time (in seconds). You run for 50 seconds. Are the distance you run and the rate you run at proportional? Use a graph to justify your answer.