55 Factoring Expressions

Learning Target: Success Criteria:

Learning Target: Factor numerical and algebraic expressions.

- I can use the Distributive Property to factor numerical expressions.
- I can identify the greatest common factor of terms including variables.
- I can use the Distributive Property to factor algebraic expressions.
- I can interpret factored expressions in real-life problems.

EXPLORATION 1

Finding Dimensions

Work with a partner.

a. The models show the area (in square units) of each part of a rectangle. Use the models to find missing values that complete the expressions. Explain your reasoning.

- **b.** In part (a), check that the original expressions are equivalent to the expressions you wrote. Explain your reasoning.
- **c.** Explain how you can use the Distributive Property to rewrite a sum of two whole numbers with a common factor.

Math Practice

Evaluate Results Do your answers in the first two models seem reasonable? How can you check your answers?

5.5 Lesson

Key Vocabulary

factoring an expression, p. 228

Factoring an Expression

Words Writing a numerical expression or algebraic expression as a product of factors is called **factoring the expression**. You can use the Distributive Property to factor expressions.

Numbers $3 \cdot 7 + 3 \cdot 2 = 3(7 + 2)$ **Algebra** ab + ac = a(b + c) $3 \cdot 7 - 3 \cdot 2 = 3(7 - 2)$ ab - ac = a(b - c)

EXAMPLE 1

Factoring Numerical Expressions

a. Factor 18 + 30 using the GCF.

One way to find the GCF of 18 and 30 is to list their factors.

Factors of 18: (1),(2),(3),(6), 9, 18

Factors of 30: (1),(2),(3), 5,(6), 10, 15, 30

The GCF of 18 and 30 is 6.

Write each term of the expression as a product of the GCF and the remaining factor. Then use the Distributive Property to factor the expression.

18 + 30 = 6(3) + 6(5)	Rewrite using GCF.
= 6(3 + 5)	Distributive Property

b. Factor 20 - 12 using the GCF.

One way to find the GCF of 20 and 12 is to list their factors.

Factors of 20: (1),(2),(4), 5, 10, 20

Factors of 12: (1),(2), 3,(4), 6, 12

Circle the common factors.

Circle the common factors.

The GCF of 20 and 12 is 4.

Write each term of the expression as a product of the GCF and the remaining factor. Then use the Distributive Property to factor the expression.

20 -	12	=	4(5) - 4(3)
		=	4(5-3)

Rewrite using GCF.

Distributive Property

Try It Factor the expression using the GCF.

1. 9 + 15 **2.** 60 + 45 **3.** 30 - 20

When you factor an expression, you can factor out any common factor.

Multi-Language Glossary at BigldeasMath.com

EXAMPLE 2

Factoring Algebraic Expressions

a. Factor 3x + 42 using the GCF.

You can find the GCF of 3*x* and 42 by writing their prime factorizations.

$$3x = 3 \cdot x$$
$$42 = 2 \cdot 3 \cdot 7$$

Circle the common prime factor.

The GCF of 3*x* and 42 is 3. Use the GCF to factor the expression.

$$3x + 42 = 3(x) + 3(14)$$
 Rewrite using GCF.

= 3(x + 14)**Distributive Property**

b. Factor 63z - 27y using the GCF.

You can find the GCF of 63z and 27y by writing their prime factorizations.

$63z = 3 \cdot 3 \cdot 7 \cdot z$	
$27y = 3 \cdot 3 \cdot 3 \cdot 1$	Circle the common prime factors.
$2iy = 0 \cdot 0 \cdot 3 \cdot y$	

The GCF of 63z and 27y is $3 \cdot 3 = 9$. Use the GCF to factor the expression.

$$63z - 27y = 9(7z) - 9(3y)$$
 Rewrite using GCF.
= 9(7z - 3y) Distributive Property

Try It Factor the expression using the GCF.

Solve each exercise. Then rate your understanding of the success criteria in your journal.

FACTORING EXPRESSIONS Factor the expression using the GCF.

- **7.** 16 + 24 **8.** 49 - 28 **9.** 8y + 14
- 10. WHICH ONE DOESN'T BELONG? Which expression does not belong with the other three? Explain your reasoning.

3(8n+12)4(6n + 9)6(4n+3)

12(2n+3)

- **11. WP REASONING** Use what you know about factoring to explain how you can factor the expression 18x + 30y + 9z. Then factor the expression.
- **12. CRITICAL THINKING** Identify the GCF of the terms $(x \cdot x)$ and $(4 \cdot x)$. Explain your reasoning. Then use the GCF to factor the expression $x^2 + 4x$.

EXAMPLE 3 Modeling Real Life

You receive a discount on each book you buy for your electronic reader. The original price of each book is x dollars. You buy 5 books for a total of (5x - 15) dollars. Factor the expression. What can you conclude about the discount?

To factor 5x - 15, you can find the GCF of 5x and 15 by writing their prime factorizations.

 $5x = 5 \cdot x$ $15 = 5 \cdot 3$

Circle the common prime factor.

So, the GCF of 5*x* and 15 is 5. Use the GCF to factor the expression.

Check Suppose that the original price of each book is \$6. Verify that each expression has the same value when x = 6.

5x - 15 = 5(6) - 15 = 155(x - 3) = 5(6 - 3) = 15 5x - 15 = 5(x) - 5(3) Rewrite using GCF. = 5(x - 3) Distributive Property

The factor 5 represents the number of books purchased. The factor (x - 3) represents the discounted price of each book. This factor is a difference of two terms, showing that the original price, x, of each book is decreased by 3.

So, the factored expression shows a \$3 discount for every book you buy. The original expression shows a total savings of \$15.

Self-Assessment for Problem Solving

Solve each exercise. Then rate your understanding of the success criteria in your journal.

- **13.** A youth club receives a discount on each pizza purchased for a party. The original price of each pizza is x dollars. The club leader purchases 8 pizzas for a total of (8x 32) dollars. Factor the expression. What can you conclude about the discount?
- 14. Three crates of food are packed on a shuttle departing for the Moon. Each crate weighs *x* pounds. On the Moon, the combined weight of the crates is (3x 81) pounds. What can you conclude about the weight of each crate on the Moon?

5.5 Practice

Use the Distributive Property to simplify the expression.

1.	2(n + 8)	2. 3(4 +	- <i>m</i>) 3.	7(b-3)	4. $10(4-w)$	
Writ	e the phrase as an	express	ion.			
5.	5 plus a number p		6.	18 less than a n	number <i>r</i>	
7.	11 times a number	d	8.	a number <i>c</i> div	ided by 25	
Deci	ide whether the ra	tes are e	quivalent.			
9.	84 feet in 12 secon	ds	10.	12 cups of soda	a for every 54 cups o	ofjuice
	217 feet in 31 seco	nds		8 cups of soda	for every 36 cups of	juice
Mate		•.	·····			

11. 0.36 12. 3.6 13. 0.0036 14. 0.036 A. 0.36% B. 360% C. 36% D. 3.6%

🕪 Concepts, Skills, & Problem Solving

FINDING DIMENSIONS The model shows the area (in square units) of each part of a rectangle. Use the model to find missing values that complete the expression. **Explain your reasoning.** (See Exploration 1, p. 227.)

FACTORING NUMERICAL EXPRESSIONS Factor the expression using the GCF.

17.	7 + 14	18. 12 + 42	19. 22 + 11	20.	70 + 95
21.	60 - 36	22. 100 - 80	23. 84 + 28	24.	48 + 80
25.	19 + 95	26. 44 - 11	27. 18 – 12	28.	48 + 16
29.	98 - 70	30. 58 + 28	31. 72 – 39	32.	69 + 84

33. WP **REASONING** The whole numbers *a* and *b* are divisible by *c*, where *b* is greater than *a*. Is a + b divisible by *c*? Is b - a divisible by *c*? Explain your reasoning.

34. MULTIPLE CHOICE Which expression is *not* equivalent to 81x + 54?

A. 27(3x+2) **B.** 3(27x+18) **C.** 9(9x+6) **D.** 6(13x+9)

FACTORING ALGEBRAIC EXPRESSIONS Factor the expression using the GCF.

35.	2x + 10	36.	15x + 6	37.	26x - 13	38.	50x - 60
39.	36x + 9	40.	14x - 98	41.	18p + 26	42.	16m + 40
43.	24 + 72n	44.	50 + 65h	45.	76 <i>d</i> – 24	46.	27 - 45c
47.	18t + 38x	48.	90y + 65z	49.	10x - 25y	50.	24y + 88x

51. OPEN-ENDED Use the Distributive Property to write two expressions that are equivalent to 8x + 16.

MATCHING Match the expression with an equivalent expression.

52.	8x + 16y	53. $4x + 8y$	54. $16x + 8y$	55. $8x + 4y$
	A. $4(2x + y)$	B. $2(4y+2x)$	C. $4(2x + 4y)$	D. $8(y+2x)$

56. YOU BE THE TEACHER Your friend factors the expression 24x + 56. Is your friend correct? Explain your reasoning.

6	24x + 56 = 8(3x) + 8(7)
0	$= (8+8) \cdot (3x+7)$
2	= 16(3 <i>x</i> + 7)

57. MODELING REAL LIFE You sell soup mixes for a fundraiser. For each soup mix you sell, the company that makes the soup receives *x* dollars, and you receive the remaining amount. You sell 16 soup mixes for a total of (16x + 96) dollars. How much money do you receive for each soup mix that you sell?

- **58.** WP PROBLEM SOLVING A clothing store is having a sale on holiday socks. Each pair of socks costs *x* dollars. You leave the store with 6 pairs of socks and spend a total of (6x 14) dollars. You pay with \$40. How much change do you receive? Explain your reasoning.
- **59. (MP) STRUCTURE** You buy 37 concert tickets for \$8 each, and then sell all 37 tickets for \$11 each. The work below shows two ways you can determine your profit. Describe each solution method. Which do you prefer? Explain your reasoning.

Profit = 37(11) - 37(8)Profit = 37(11) - 37(8)= 407 - 296= 37(11 - 8)= \$111= 37(3)= \$111

60. WP NUMBER SENSE The prime factorizations of two numbers are shown, where *a* and *b* represent prime numbers. Write the sum of the two numbers as an expression of the form 14(p + p). Explain your reasoning.

Number 1: $2 \cdot 11 \cdot 5 \cdot a$ **Number 2:** $7 \cdot b \cdot 3 \cdot 3$