Properties of Addition and Multiplication

Learning Target: Identify equivalent expressions and apply properties to generate equivalent expressions.

- Success Criteria:
- I can explain the meaning of equivalent expressions.
- I can use properties of addition to generate equivalent expressions.
- I can use properties of multiplication to generate equivalent expressions.

EXPLORATION 1

Identifying Equivalent Expressions

Work with a partner.

a. Choose four values for a variable *x*. Then evaluate each expression for each value of *x*. Are any of the expressions *equivalent*? Explain your reasoning.

x		
$4 \cdot (x \cdot 4)$		

x		
<i>x</i> + 4 + 4		

x			x
<i>x</i> + 8			(4 · x

x		
(4 · x) · 4		

b. You have used the following properties in a previous course. Use the examples to explain the meaning of each property.

Commutative Property of Addition: 3 + 5 = 5 + 3

Commutative Property of Multiplication: $9 \cdot 3 = 3 \cdot 9$

Associative Property of Addition: 8 + (3 + 1) = (8 + 3) + 1

Associative Property of Multiplication: $12 \cdot (6 \cdot 2) = (12 \cdot 6) \cdot 2$

Are these properties true for algebraic expressions? Explain your reasoning.

Math Practice

Use

Counterexamples Use a counterexample to show that the **Commutative Property** is not true for division.

5.3 Lesson

Key Vocabulary () equivalent expressions, *p. 216* Expressions that result in the same number for any value of each variable are **equivalent expressions**. You can use the Commutative and Associative Properties to write equivalent expressions.

🕅 Key Ideas

Commutative Properties

Words Changing the order of addends or factors does not change the sum or product.

Numbers 5 + 8 = 8 + 5

Algebra a + b = b + a $a \cdot b = b \cdot a$

Associative Properties

Words Changing the grouping of addends or factors does not change the sum or product.

```
Numbers (7 + 4) + 2 = 7 + (4 + 2)
(7 \cdot 4) \cdot 2 = 7 \cdot (4 \cdot 2)
Algebra (a + b) + c = a + (b + c)
(a \cdot b) \cdot c = a \cdot (b \cdot c)
```

 $5 \cdot 8 = 8 \cdot 5$

EXAMPLE 1

Using Properties to Write Equivalent Expressions

a. Simplify the expression 7 + (12 + x).

7 + (12 + x) = (7 + 12) + x= 19 + x

Associative Property of Addition Add 7 and 12.

- Add 7 dild
- b. Simplify the expression (6.1 + x) + 8.4.
 - (6.1 + x) + 8.4 = (x + 6.1) + 8.4 Commutative Property of Addition = x + (6.1 + 8.4) Associative Property of Addition = x + 14.5 Add 6.1 and 8.4.
- c. Simplify the expression 5(11*y*).

$$5(11y) = (5 \cdot 11)y$$
$$= 55y$$

Algebraic Expressions and Properties

Associative Property of Multiplication Multiply 5 and 11.

Try It Simplify the expression. Explain each step.

1.
$$10 + (a + 9)$$
 2. $\left(c + \frac{2}{3}\right) + \frac{1}{2}$ **3.** $5(4n)$

Chapter 5

216

21 = 21 🗸

Multi-Language Glossary at BigldeasMath.com

One way to check
whether expressions are
equivalent is to evaluate
each expression for any
value of the variable. In
Example 1(a), use
$$x = 2$$
.
 $7 + (12 + x) \stackrel{?}{=} 19 + x$
 $7 + (12 + 2) \stackrel{?}{=} 19 + 2$

Numbers 7 + 0 = 7

Addition Property of Zero

Words The sum of any number and 0 is that number.

Algebra a + 0 = a

Multiplication Properties of Zero and One

Words The product of any number and 0 is 0.

The product of any number and 1 is that number.

 Numbers
 $9 \cdot 0 = 0$ Algebra
 $a \cdot 0 = 0$
 $4 \cdot 1 = 4$ $a \cdot 1 = a$

EXAMPLE 2 Using Properties to Write Equivalent Expressions

a. Simplify the expression $9 \cdot 0 \cdot p$.

9

$\bullet 0 \bullet p = (9 \bullet 0) \bullet p$	Associative Property of Multiplication
$= 0 \bullet p$	Multiplication Property of Zero
= 0	Multiplication Property of Zero

b. Simplify the expression $4.5 \cdot r \cdot 1$.

 $4.5 \cdot r \cdot 1 = 4.5 \cdot (r \cdot 1)$ Associative Property of Multiplication $= 4.5 \cdot r$ Multiplication Property of One= 4.5rRewrite.

Try It Simplify the expression. Explain each step.

```
4. 12 \cdot b \cdot 0 5. 1 \cdot m \cdot 24 6. (t+15) + 0
```


Solve each exercise. Then rate your understanding of the success criteria in your journal.

USING PROPERTIES Simplify the expression. Explain each step.

- **7.** (7+c)+4 **8.** $4(b \cdot 6)$ **9.** $0 \cdot b \cdot 9$
- **10. WRITING** Explain what it means for expressions to be equivalent. Then give an example of equivalent expressions.
- **11. OPEN-ENDED** Write an algebraic expression that can be simplified using the Associative Property of Multiplication and the Multiplication Property of One.

EXAMPLE 3 Modeling Real Life

You and six friends play on a basketball team. A sponsor paid \$100 for the league fee, *x* dollars for each player's T-shirt, and \$68.25 for basketballs. Write an expression that represents the total amount (in dollars) the sponsor paid. Then find the total amount paid when each T-shirt costs \$14.50.

Use a verbal model to write an expression that represents the sum of the league fee, the cost of the T-shirts, and the cost of the basketballs. Then evaluate the expression when x = 14.5.

Evaluate 7x + 168.25 when x = 14.5.

7x + 168.25 = 7(14.5) + 168.25 = 101.5 + 168.25 = 269.75

An expression that represents the total amount (in dollars) is 7x + 168.25. When each T-shirt costs \$14.50, the sponsor pays \$269.75.

Self-Assessment for Problem Solving

Solve each exercise. Then rate your understanding of the success criteria in your journal.

- **12.** You and five friends form a team for an outdoor adventure race. Your team needs to raise money to pay for \$130 of travel fees, *x* dollars for each team member's entry fee, and \$85.50 for food. Use an algebraic expression to find the total amount your team needs to raise when the entry fee is \$25.50 per person.
- **13.** You have \$50 and a \$15 gift card to spend online. You purchase a pair of headphones for \$34.99 and 8 songs for *x* dollars each. Use an algebraic expression to find the amount you have left when each song costs \$1.10.

Common Error

You **and** six friends are on the team, so use 7, not 6, to represent the number of T-shirts.

5.3 Practice

🕨 Review & Refresh

Write the phrase as an expression.

1. 10 added to a number *p* 2. the product of 6 and a number *m* 3. the quotient of a number *b* and 15
 4. 7 fewer than a number *s*

Write the prime factorization of the number.

5.	36	6. 144	7.	147	8.	205
Eval	uate the expressio	n.				
9.	8.092 + 3.5		10.	16.78 - 12.237		
11.	9.17 + 1.83 + 2.64	1	12.	8.43 - 6.218 + 4.2	2	

Represent the ratio relationship using a graph.

13.	Oil (teaspoons)	8	16	24	14.	Atoms	4	8	12
	Flour (cups)	1	2	3		Protons	64	128	192

🅪 Concepts, Skills, & Problem Solving

MATCHING Match the expression with an equivalent expression.

(See Exploration 1, p. 215.)

15. $3 + 3 + y$	16. $(y \cdot y) \cdot 3$	17. 3 • 1 • <i>y</i>	18. $(3+0) + (y+y)$
A. <i>y</i> • 3	B. $y + 3 + 3$	C. $y(3 \cdot y)$	D. $(3 + y) + y$

IDENTIFYING PROPERTIES Tell which property the statement illustrates.

- **19.** $5 \cdot p = p \cdot 5$ **20.** 2 + (12 + r) = (2 + 12) + r**21.** $4 \cdot (x \cdot 10) = (4 \cdot x) \cdot 10$ **22.** x + 7.5 = 7.5 + x**23.** (c + 2) + 0 = c + 2**24.** $a \cdot 1 = a$
- **25. YOU BE THE TEACHER** Your friend states the property that the statement illustrates. Is your friend correct? Explain your reasoning.

>>	
6	(7 + x) + 3 = (x + 7) + 3
-0	
>>-	Associative Property of Addition
>>-	1 -

USING PROPERTIES Simplify the expression. Explain each step.

26.	6 + (5 + x)	27. (14 + <i>y</i>) + 3	28. 6(2 <i>b</i>)
29.	7(9 <i>w</i>)	30. $3.2 + (x + 5.1)$	31. $(0 + a) + 8$
32.	$9 \bullet c \bullet 4$	33. (18.6 • <i>d</i>) • 1	34. $\left(3k+4\frac{1}{5}\right)+8\frac{3}{5}$
35.	(2.4 + 4n) + 9	36. (3 <i>s</i>) • 8	37. <i>z</i> • 0 • 12

Section 5.3 Properties of Addition and Multiplication 219

- **38. GEOMETRY** The expression 12 + x + 4 represents the perimeter of a triangle. Simplify the expression.
- **39. (MP) PRECISION** A case of scout cookies has 10 cartons. A carton has 12 boxes. The amount you earn on a whole case is 10(12*x*) dollars.
 - **a.** What does *x* represent?
 - **b.** Simplify the expression.
- **40. MODELING REAL LIFE** A government estimates the cost to design new radar technology over a period of *m* months. The government estimates \$840,000 for equipment, \$15,000 for software, and \$40,000 per month for wages. Use an algebraic expression to find the total cost the government estimates when the project takes 16 months to complete.

WRITING EXPRESSIONS Write the phrase as an expression. Then simplify the expression.

- **41.** 7 plus the sum of a number *x* and 5
- **42.** the product of 8 and a number *y*, multiplied by 9

USING PROPERTIES Copy and complete the statement using the specified property.

	Property	Statement
43.	Associative Property of Multiplication	7(2y) =
44.	Commutative Property of Multiplication	$13.2 \bullet (x \bullet 1) =$
45.	Associative Property of Addition	17 + (6 + 2x) =
46.	Addition Property of Zero	2 + (c + 0) =
47.	Multiplication Property of One	$1 \cdot w \cdot 16 =$

- **48. GEOMETRY** Five identical triangles form the trapezoid shown.
 - **a.** What is the perimeter of the trapezoid?
 - **b.** How can you use some or all of the triangles to form a new trapezoid with a perimeter of 3x + 14? Explain your reasoning.
- **49. DIG DEEPER** You and a friend sell hats at a fair booth. You sell 16 hats on the first shift and 21 hats on the third shift. Your friend sells *x* hats on the second shift.
 - **a.** The expression 37(14) + 10x represents the amount (in dollars) that you both earn. How can you tell that your friend is selling the hats for a lower price?
 - **b.** You earn more money than your friend. What can you say about the value of *x*?

